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Families of  horizontal ideals of  contact manifolds of  finite order are studied. 
Each horizontal ideal is shown to admit  an n-dimensional  module  of  Cauchy 
characteristic vectors that is also a module  of annihilators (in the sense of  Cartan) 
of  the contact ideal. Since horizontal ideals are generated by 1-forms, any 
completely integrable horizontal ideal in the family leads to a foliation of  the 
contact manifold by submanifolds  of  d imension n on which the horizontal ideal 
vanishes. Explicit condit ions are obtained under  which an open subset  of  a leaf 
of  this foliation is the graph of  a solution map  of  the fundamenta l  ideal that 
characterizes a given system of  partial differential equations of  finite order with 
n independent  variables. The solution maps  are obtained by sequential  integra- 
tion of  systems of  au tonomous  ordinary differential equations that are determined 
by the Cauchy characteristic vector fields for the problem. We show that every 
smooth  solution map  can be obtained in this manner.  Let {V~[l-<i-<n} be a 
basis for the module  of  Cauchy characteristic vector fields that are in Jacobi 
normal  form. If  a subsidiary balance ideal admits each of  the n vector fields V~ 
as a smooth  isovector field, then certain leaves of  the foliation generated by the 
corresponding closed horizontal ideal are shown to be graphs of  solution maps  
of  the fundamenta l  ideal. A subclass of  these constructions agree with those of  
the Cartan-K~ihler theorem. Conditions are also obtained under  which every 
leaf of  the foliation is the graph of a solution map. Solving a given system of  r 
partial differential equations with n independent  variables on a first-order contact 
manifold is shown to be equivalent to the problem of  constructing a complete 
system of  independent  first integrals. Properties of  systems of  first integrals are 
analyzed by studying the collection ISO[A~] of  all isovectors of  the horizontal 
ideal. We show that ISO[A~] admits the direct sum decomposit ion Yg*[A~]0) 
~ as a vector space, where Yg*[A~] is the module  of  Cauchy characteristics 
of  the horizontal ideal. ISO[A~] also forms a Lie algebra under  the s tandard 
Lie product,  ~ * [ a ~ ]  and W[A~] are Lie subalgebras of  ISO[A~], and Yg*[A~] 
is an ideal. A change o f  coordinates that resolves (straightens out) the canonical 
basis for Yg*[A~] is constructed. This change of  coordinates is used  to reduce 
the problem of  solving the given system of  PDE to the problem of  root extraction 
of  a system of  r functions of n variables, and to establish the existence of 
solutions to a second-order  system of  overdetermined PDE that generate the 
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subspace ~V[A~]. Similar results are obtained for second-order contact mani- 
folds. Extended canonical transformations are studied. They are shown to provide 
algorithms for calculating large classes of closed horizontal ideals and a partial 
analog of classical Hamilton-Jacobi theory. 

The advent of  nonlinearities in the field equations of  non-Abelian gauge 
theories and related topics has made it much more difficult to obtain exact 
solutions or even good approximate  solutions of  these field equations. It 
has been suggested that the Cartan-K~ihler theory should be used in the 
place of  more classical methods. Unfortunately, the Cartan-K/ihler  theory 
can lead to computat ional  horrors whose mastery is both difficult and time 
consuming. This paper  presents alternatives to the Cartan-K~ihler theory 
that are more naturally attuned to the structure of  the field equations of  
physical theories (i.e., to equations of  balance such as Euler-Lagrange 
equations). Specific conditions for the existence of local solutions are 
obtained. Satisfaction of these conditions is shown to provide the necessary 
information for the explicit construction of solutions by integrating systems 
of  autonomous ordinary differential equations. 

1. FUNDAMENTAL IDEALS FOR SYSTEMS OF PARTIAL 
DIFFERENTIAL E Q U A T I O N S  

The n-dimensional manifold of  independent variables is denoted by 
M,.  I assume that Mn is orientable and that a system of local coordinates 
{xil 1 -< i-< n} has  been introduced. In practice, n will usually be 4 or less, 
and I will often write {x, y, z, t} or a subset of  these in order to simplify 
examples. The volume element (basis n-form) of MR will be denoted by/~. 
For n = 4, the standard orientation gives/.r = dx ^ dy ^ dz ^ dr. The conjugate 
basis for (n - 1)-forms is given by {/~i = a i ] / ~ l l  - i <- n} with the properties 
(Edelen, 1985, Section 3.5) 

dx j ^ I~i = ~tx ,  dlzi : 0 

Studies of  systems of PDE require "place holders" for the dependent  
variables and their various partial derivatives. These are provided by 
introducing a D-order contact manifold KD = MR • R m with local coordinates 
{ xi, q~, YT, Y i ~ , . . . ,  Yi~i2...io} and contact 1-forms 

C '~ = d q ~ _ y ~  dx k, C ? = d y T - - y ~ k  dx k, . . .  
(1.1) 

oe _ t ~  oe  

Ci,...iu 1 -  dyiv.-iD_l--Yiv..iD lk dxk 

It may be assumed, without loss of  generality, that all y ' s  with more than 
one lower index are completely symmetric in all lower indices. It will be 
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useful in what follows to define the integer mo by 

d im(Ko)  = n + m o  (1.2) 

I will also assume that there are N dependent  variables, so that all Greek 
indices will range over the integers between 1 and N. Thus, for K1 we have 
m l = N + n N .  This allows the introduction of an alternative coordinate 
designation 

{ xi, q~, Y ~ , . . . ,  Yi~."io} = { xi,  "zA] 1 <-- A <- mD} 

Ifpo: {x~} is any point in M, ,  the too-dimensional manifold that is specified 
by {x i = x~] 1 -< i -< n} will be referred to as t h e f i b e r  of K o  over Po with fiber 
coordinates {zA}. 

Let Jn be an open, connected subset of  a copy of M~. I f  qb : J ,  -~ KD 
annihilates each contact 1-form, then the y ' s  become derivatives of  the 
dependent  variables with respect to the independent  variables on the range 
of  qb (see Edelen, 1985, Chapter  6). The PDE under  study can then be 
written as a collection of balance n- forms 

Ba = hdx - d W  i ^ tzi, 1 <- a <- r (1.3) 

where {h,, W~a] 1 -< a -< R, 1 -< i <~ n} are elements of  A~ For a first-order 
j a c~ i _ i j ~ = W ~ -  W a ( x ,  contact manifold KI ,  we have h,  h a ( x ,  q , y j  ), q , y~ ), in 

i oL which case a map ~bIx i =  x ,  q = ~b ~ (x J), y7 = 0~b" (x ~) that annihilates the 
contact 1-forms will yield 

d ~ 
- - - -  W a ( X  ' ~)a, o j r  O)*B. = {h~(x j, r 0jr ~) dx' 

Thus, if the W's all vanish, r  = 0 gives a system of  r nonlinear first-order 
PDE, while for nonvanishing W's,  qb*B~ = 0 gives a system of r quasilinear 
second-order PDE. In the case of  a contact manifold of  order D, cP*B. = 0 
will give a system of nonlinear PDE of order D if the W's all vanish, while 
nonvanishing W's will give a system of quasilinear PDE of order D + 1. 
Balance n-forms arise naturally in the calculus of  variations of  multiple 
integrals with action n-form L/x, where they are the Euler-Lagrange n-forms 
generated by the Lagrangian L e A~ simply take r = N, D = 1, and 

OL OL 
h~= W~= 

Oq '~ " Oy'~ 

They are thus naturally adapted to the study of  problems in modern field 
theory. 

This information can be organized in a more efficient manner  by using 
the fact that A(KD) is a graded algebra and thus has well-defined ideals. 
Cartan has shown (Cartan, 1945) that the object of  importance is the 
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f undamenta l  ideal 5 of  a system of PDE. This is the closed differential ideal 
o f  A(Ko)  that is generated by the contact 1-forms and the balance n-forms; 

5 = I { C  ~, d C  ~, C 7 ,  d C T ' , . . . ,  Ba, dBa} (1.4) 

The fundamental  ideal contains the contact ideal 

Cs = I { C  ~, dC" ,  . . . , C~...~,, dC,~,...,o} (1.5) 

of  order D as a closed subideal. 
The collection of all solution maps of the given system of PDE is 

given by 

S = { r  ~ KDIO*tt  # 0, 0 * 5  = 0} (1.6) 

The requirement O*~ # 0 guarantees that the range of  �9 in KD projects 
onto M,  as an n-dimensional region; that is, the x 's  remain independent  
on the range of  O. On the other hand, 0 * 5  = 0 if and only if 

O*C ~ =0,  0 " C 7  = 0 , . . .  (1.7) 

and 

O*Ba = 0  (1.8) 

because O*f~ = 0 implies O*df~ = 0. The basic problem is therefore twofold; 
the solution set S must be shown to be nonvacuous,  and methods for the 
explicit construction of  solution maps must be found. 

2. CANONICAL SYSTEMS OF VECTOR FIELDS 

We noted in the previous section that the contact ideal ~D of order D 
is a closed subideal of  the fundamental  ideal. It turns out that much of  the 
analysis can be based solely on this subideal. This is because the generators 
of  the fundamental  ideal that characterize the PDE are represented in this 
work by the balance n-forms {Ba] 1 -< a -< r}, while the traditional approach 
represents the PDE under  study by 0-forms (Cartan, 1945; Olver, 1986; 
Pommaret ,  1978). Since A(Ko)  is a graded algebra, it proves to be useful 
to introduce the graded submodules of  c~o over A~ by 

~ = ~r ~ Ak(KD) (2.1) 

An essential aspect of  the Cartan-K~ihler theory (Cartan, 1945; K~ihler, 
1949) is the construction of modules of  vector fields on K o  that are 
annihilators of  the fundamental  ideal. The same proves to be true for the 
ideal Co,  but the situation is significantly simpler because we will only have 
to achieve the construction for a "normal ized"  basis for a module of  Cartan 
annihilators of  the contact ideal. The reasons for this will become apparent  
in what follows. 
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Let T(KD) denote the Lie algebra of  smooth vector fields on KD. The 
following notation will be used for the natural basis elements for T(KD): 

Oi = O/Ox i, as O/Oq ~, i ~, " = O~=O/Oy~, O~=O/Oy~j , . . .  (2.2) 

Definition 2.1. A system of n vector fields {V,.[ 1-< i -  < n} on K o  is said 
to be a canonical system (i.e., a basis for a module of  Cartan annihilators 
of  c~D) if and only i f  the vectors satisfy the normalization conditions 

V~ ] dx  j = 6~ (2.3) 

and 

V~,J V/,J . - . J  V,~J ~r l < - k < - n  (2.4) 

Remark.  Since there are only n vector fields in a canonical system, the 
conditions (2.4) will necessarily be satisfied by a canonical system for 
all k > n. 

In general, the conditions for a system of  n vector fields to be a canonical 
system depend on the order of  the contact manifold. In view of their obvious 
importance,  we will concentrate on contact manifolds of  first and second 
orders. Result for contact manifolds of  higher order will follow the same 
pattern as those given below. The following characterizations of  canonical 
systems are obtained from several theorems established in Section 2 of  
Edelen (in press). 

Theorem 2.1. A system of vector fields {V~ I 1-< i<~ n} is a canonical 
system on a first-order contact manifold if and only if 

~ J ( 2 . 5 )  V~=Oi+yiO~+'Aj jO~,  l<- i<-n  

where the A's  are any system of elements of  A~ that satisfy the symmetry 
relations 

ATj = Aj~- (2.6) 

and we have 

[ V~, ~ ]  = { V,.(A~) - V~(ATk)}0~ (2.7) 

A first-order contact manifold thus admits an N ( n  + 1)/2-fold infinity of  
canonical systems, and hence ~1 admits an N ( n + l ) / 2 - f o l d  infinity of  
modules of  Cartan annihilators. 

Theorem 2.2. A system of vector fields { V,. I 1 -< i-< n} is a canonical 
system on a second-order contact manifold if and only if 

V~ = O, + yTO~ + y~O~ -- ,-,,~k~ra" ~jk (2.8) 
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where the B's  are any system of elements of  A~ that satisfy the symmetry 
relations 

c L  - -  c ~  

B i jk  - -  Bjik = Bjki (2.9) 

and we have 

[ Vi, Vj]  = { Vi(Bjkm) - ~ k,, Vj(B,km)}O~ (2.10) 
A second-order contact manifold thus admits an Nn2-fold infinity of  canoni- 
cal systems, and R E admits an Nn2-fold infinity of  modules of  Cartan 
annihilators. 

In order to clarify some of the properties of  canonical systems, we 
recall several standard definitions (Edelen, 1985). 

Definition 2.2. A vector field U is a Cauchy characteristic of an ideal 
N of A(KD) if and only if 

U ] Arc  Ar (2.11) 

Definition 2.3. A vector field U is an isovector of an ideal A r of  A(KD) 
if and only if 

~ g v N c  N (2.12) 

These lead to the following conclusions. 

Theorem 2.3. Let { V~} be a canonical system for a contact manifold of  
order D. I f  U is any vector field in the linear span of { V~}, then U is neither 
a Cauchy characteristic vector nor an isovector of  the contact ideal of  
order D. 

Proof  For D = 1, I use Theorem 2.1 to obtain V~ J dC ~ = @7 - A ~  dx j, 
while for D = 2, Theorem 2.2 gives V~ ] dC~. = dyj~ - B~m dx m. Now, any 
vector U in the linear span of { V~} has the representation U = N;V~. We 
therefore have 

for D = 1,. and 

U J d C  ~ = N~{dy7  - A ~ j  dxJ}~  c~, 

U ] dC7 = i ~ '~ dx"}r  ~2 N {dyji - Bijm 

for D = 2. Since similar results can be obtained for any finite value of D, 
I conclude that U is not a Cauchy characteristic vector of  ~o.  Noting that 
~vcCD = U ]  d ~ D + d ( U ]  cr U [  d(~D for any U in the linear span of  
{ V~}, the previous calculations show that ~ u C  ~ ~ (~1 and ~ u C  7 ~ (~2. Since 
similar results can be obtained for any finite value of D, we conclude that 
U is not an isovector of  ~o.  �9 

Remark.  In jet bundle formulations, KD loosely corresponds to the 
Dth  jet bundle j w )  when we take the 0th jet bundle to be the manifold 
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~(o)= Mn x• N with local coordinates {x i, q~[1 <- i -  n, 1 --- a --- N}. A vector 
field on j(o) has the form ~= vi(x j, q~)Oi+v~(x j, q')O~. Vector fields on 
j ( o )  are obtained by prolongation of vector fields on j(o) in order to ensure 
compatibili ty with jet bundle fibration (see refs. 5 and 7 for the details). A 
vector field U on ~(o)  thus has the form U=pr(~ An elementary 
calculation based on Theorems 2.1 and 2.2 shows that no vector in the 
linear span of  a canonical system is the prolongation of a vector field on 
j(o) for D --- 1 or for D = 2. A restriction to the jet bundle formulation thus 
precludes most of  the results that will be established in this paper. 

3. R E F O R M U L A T I O N  IN T E R M S  OF H O R I Z O N T A L  
A N D  VERTICAL IDEALS 

The fact that no vector in the linear span of a canonical system { V~} 
is either a Cauchy characteristic or an isovector suggests that the wrong 
ideal of  A(Ko)  has been used. I will confine consideration, for the most 
part,  to K1 and note the corresponding results for K2 through remarks. The 
pattern for general values of  D should then be clear to the reader, who can 
supply the details if the need should arise. 

Definition 3.1. The vertical ideal of  A(K1) is the closed differential 
ideal that is defined by 

7f = I{dx~ll <-i<-n} (3.1) 

Remark. The vertical ideal is universal with respect to the choice of  
D, and hence (3.1) can be used for any value of D. The reason for referring 
to this ideal as "vertical" is that ~ is annihilated on the submanifolds of  
codimension n that are given by {x ~= k i l l - < i -  < n}, where the k 's  denote 
constants; that is, ~ vanishes when restricted to fibers of  K~.  The ideal 7F 
contains A(Mn), and hence ~ characterizes those aspects of  A(KD) that 
are inherited from Mn. 

Definition 3.2. A horizontal ideal of  A(K1) is defined by 

W[A~] = I {C  '~, H•[1 -< a - N, 1 -< i --- n} (3.2) 

with 
o~ H7 = dy7 - A~) dx j (3.3) 

for each choice of  A~ c A~ that satisfies the symmetry conditions 

A,• = Aj~ (3.4) 

Remark. For D = 2, a horizontal ideal is defined by 

~[Bqk]  = I { C  a, Ci , Hq] 1 <- a <-- N, 1 <- i,j  <- n} (3.5) 
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with 
~x ot c~ 

H i j  = dy i j  - BUk d x  k (3.6) 

for each choice of B ~ k E  A~ that satisfies the symmetry conditions 
c~ ot ct 

Bijk  = Bjik = Bjki  (3.7) 

Definition 3.3. A horizontal ideal ~g[Ai~-] serves to define an associated 
horizontal module ~*[A~]  of  T(  K1) by 

~*[A~]  = { U e T(K1)I  U J ~[A~]  c ~[Ai~-]} (3.8) 

that is, ~*[A~]  is the module of Cauchy characteristic vector fields 
of  ~[Ai~]. 

Remark.  For D = 2, (3.8) is replaced by 

~*[B~k] = { U e T(K2) I U J ~([B~k] c ~([Bi~k]} (3.9) 

and ~*[B~k] is the module of Cauchy characteristic vector fields of ~g[B~k]. 

Theorem 3.1. The horizontal module ~*[A~]  admits the canonical 
system 

V~=cg,+y~O~+A~O~, l<- i<-n  (3.10) 

as a basis. Hence ~g*[A~] is a module of Cartan annihilators of cr and 

V~ J C a =0,  Vii J H• = 0  (3.11) 

Proof. Since ~[Ai~] is generated by the 1-forms {C a, HT}, any element 
f~ of  ~[A~s] is of the form 

f ~ = C ~ ^ P = + H T ^ Q ' ~  

with {P., Q~) of the same degree. We therefore have 

U J 11 =- ( U ] C=)P~ + ( U J HT)Q7 mod ~~ 

and hence 

U = uiai + u~a~ + u~'a i e T(K1)  

o~ can belong to ~ [Au] if and only if 

0 = U ]  C ~ = u  ~ ~ i . . . .  - Y i  u ,  O= U J H i  = ui - A i n u  (3.12) 

It thus follows that any U e ~g*[A~] is of the form 

U ~  i ot u {a i+yia~ ,~ s +Aua,~} = uiV~ (3.13) 

with {V~} given by (3.10). Since A~ = Aj~-, Theorem 2.1 shows that 

{V/[1-< i -  n} 
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is a canonical system. Thus, since the vectors in a canonical system are 
independent,  (3.13) shows that { V~ l l -< i -n}  is a basis for Yg*[A~]. Since 
any system of  vector fields of  the form (3.10) has been shown to be a basis 
for a module of Cartan annihilators of C~l, Y~*[A~] is a module of  Cartan 
annihilators of  of the contact ideal cr �9 

Remark. An identical argument shows that for D = 2, fft~ admits 
the canonical system 

a ct j ct k V~=oi+yiO~+yijO~+BijkO~, l<-i<-n (3.14) 

as a basis. 
This result is fundamental in what follows. It tells us how to construct 

a horizontal ideal ~[A~]  of  A(K1), for any given module N*[A~j] of Cartan 
annihilators of  the contact ideal cr such that Y(*[A~j] becomes a module 
of  Cauchy characteristics of  ~[A~].  The extensive body of  information 
associated with Cauchy characteristics is thus made available for the study 
of PDE along the lines initiated by Cartan. 

It is clear from the definitions of the vertical and horizontal ideals of 
A(K1) that AI(K1) admits the direct sum decomposition 

A l ( g l )  = { ~ r~ A~(K0}O{Y~[A~] c~ AI(K1)} (3.15) 

This leads to the following result, which will be instrumental in what follows. 

Lemma 3.1. I f f  is any smooth function on K~, then 

df  = Vi(f)  dxi + (O~f)C ~ + (O~f)Ht/ (3.16) 

and hence 

k dfc~ ~ = V~(f) dx', dfc~ ~[A,j]  = (O~f)C ~ + (o~f)Hk (3.17) 

Proof For any f ~  A~ we have 

df  = (Ok f )  dxk +(o~f)  dq ~ +(O~f) dy~ (3.18) 

However, dq t3 = C~+y~k dx k, d y ~ = H f  +Afk dx k by (1.1) and (3.3), and 
hence an elimination of  dq ~ and dy~ in (3.18) gives (3 .16) .  �9 

Theorem 3.2. For any horizontal ideal ~[A~]  of A(K1) we have 

dC ~ =- 0 rood ~[A~]  (3.19) 

dH7 =- -�89 V~(A~) - Vk(A~ni} } dx m A dx k mod ~[A~]  (3.20) 

where { V~ I 1 -< i -< n} is the canonical basis for Y(*[A~]. Hence Y([Ai~] is a 
closed differential ideal of A ( K 0  if and only if 

Vk(A~,) = Vm(A~) (3.21) 
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Proof.. It follows directly from C ~ = d q ~ - y ~ d x  i that d C  ~'= 

-dy '~  A dx  ~. Since dy~ = H ~  + A ~  dx  j by (3.3), we obtain 

- d e  ~ = ( H~' +Ai]. dx  j )  A dx '  = H 7  A dx  ~ =- 0 mod Yg[A,~] 

when we use the symmetry relations Ai~ =Aj~ .  In like manner, d H 7  = 

-dAi~k A dx  k from (3.3). Use of Lemma 3.1 to evaluate dATk thus gives 

d H 7  = -Vm(Ai~k) dx  m A dx  k -  (Ot~A~k)C ~ A dx  k -  (OJ~ATk)Hy A dx  k 

=- - Vm(A~k) dx  m A dx  k rood ~[AuJ  
1 oz oz oz =- -~{  V m ( A k ~ ) -  Vk(A, , , )}  dx  m A dx  k mod Yg[Au] 

when we use the symmetry relations A~k = A~ .  �9 

R e m a r k .  Similar results hold for D = 2 with 

d e  s =- 0, d C ~  =-- 0 mod o~[Si~jk] (3.22) 

d H ~  =- -�89 V, , (B~u)  - Vk(B~,u) } dx  m A dx  k moO ~ [  B~]k] (3.23) 

Thus, ~[Bi~jk] is a closed differential ideal of A(K2) if and only if 

V, , (B~u ) = Vk(B~nij) (3.24) 

Theorem 3.3. The horizontal module ~*[A~j] is a module of isovectors 
of  the horizontal ideal Yg[A~].] if and only if Y([A~j] is a closed differential 
ideal of  A ( K 0 .  

P r o o f  Since ~[A~]  is generated by the 1-forms {C ~, H~}, any vector 
U in Y~*[A~] is an isovector of  Yg[A~.] if and only if ~ u C  ~ and dguH~ are 
in Y([A~]. Nowv 

~ u C  ~ =  U J d C ~ + d ( U  J Ca) = UJ  d C  ~ (3.25) 

5~vHT = U J d H T  + d (  U J H T ) =  UJ d H 7  (3.26) 

where I have used the fact that any U e Yd*[A~j] is a Cauchy characteristic 
of Y~[Ai].] in order to obtain the second equalities. Using the evaluations 
(3.19) and (3.20) and the fact that any U c ~*[A~]  is a Cauchy characteristic 
of Yg[A~], it follows that 

~ u C  ~ =- 0 mod Y([A~] (3.27) 

and 

~WvH~ ~ =- -~{vm(ak~)~ ~ - vk(am~)}U~ ] (dx  m A dx  k) mod Yg[u]~ (3.28) 

Any U e Yd*[A~j] can be written in the form U = uW/because { V/I 1 -< i -< n} 
is a basis for * Y( [Au], and hence U ] ( dx  m A dx  k) = u m dx  k - u k d x "  ~ ~ .  

Thus, (3.28) shows that LPuH7 is in Yg[Ai~] if and only if 

V~(A~,)  = Vk(A~,,) (3.29) 



Ideals of Nonlinear Field Equations 697 

Theorem 3.2 shows that these conditions are both necessary and sufficient 
in order that ~ [ A ~ ]  be a closed differential ideal. �9 

Remark. A similar result holds for D =2 ;  the horizontal module 
~*[B~k] is a module of  isovectors of  ~[Bok]  if and only if ~[Bijk] is a 
closed differential ideal of  A(K2). 

4. CLOSURE C O N D I T I O N S  AND T H E  RESULTING 
F O L I A T I O N  STRUCTURES 

Each choice of  the functions A~.(x k, q', y~) satisfying the symmetry 
relations A~ = A~ leads to a horizontal ideal ~ [ A ~ ]  of A(K1) and to an 
associated horizontal module * [Aij] of  T(K) that is both a module of  
Cauchy characteristic vectors of  ~ [ A ~ ]  and a module of  Caftan annihilators 
of  ~1. Theorem 3.3 shows that ~ [ A ~ ]  is stable under Lie transport  by any 
vector in Y(*[ATj] (i.e., * ~ Y( [ A J  is a module of  isovectors of  YC[Aj) if and 
only if Y([A~] is a closed differential ideal of  A(K1). On the other hand, 
Theorem 2.2 shows that YE[A~] is a closed differential ideal if and only if 

V~(A~k) = V;(ATk) (4.1) 

and Theorem 2.1 shows that the conditions (4.1) are satisfied if and only 
if the canonical basis vectors 

'~ '~ J (4.2) V~=O~+y~O,~+AqO~, l<--i<--n 

of * Y~ [Aij] satisfy 

[ V,, Vj] = 0 (4.3) 

It thus follows that if  U =  uiV~ and W--wiV~ are any two elements of  
�9 c~ o~ 2( [ A j  and if W[A~j] is closed, then 

[ U, W]  -= {uiVi(w j) - wiVi(uJ)} Vj E ~ [Aij] (4.4) 

Hence, W*[A~j] forms a Lie subalgebra of  T ( K 0 ;  that is, * [A~j] is 
involutive. This, however, is just a realization of the Cartan theorem that 
states that the Cauchy characteristic subspace of a closed differential ideal 
is a Lie subalgebra. Noting that any horizontal ideal is generated by 1-forms, 
the Frobenius theorem tells us that any closed horizontal ideal is completely 
integrable, and hence that K~ is foliated by submanifolds of  dimension n 
on which the closed horizontal ideal vanishes. This section develops certain 
direct consequences of  the Frobenius theorem that are essential to the 
analysis. Although these results are probably well known to experts, their 
specific forms do not seem to be available in the standard literature. 

I restrict consideration from now on to horizontal ideals that are 
completely integrable. 
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Definition 4.1. The collection of all completely integrable horizontal 
ideals of A(K0 is denoted by gb(K0; that is, 

~ (KI  ) = {Yg[A~]Id~[Ag~ ] c Yg[A~]} (4.5) 

A horizontal ideal Y([A~] belongs to @(K~) if and only Theorem 4.1. 
if the A's satisfy 

where 

A~ = A~] (4.6) 
V~(Aj~) = Vj(A,~) (4.7) 

V~=Oi+yTO,~+A~O~, l<-i<-n (4.8) 

is the canonical basis for the associated horizontal module * [Ao] , and 
(4.7) is equivalent to 

[ Vii, Vj] = 0 (4.9) 

The set ~ ( K 1 )  is not vacuous, because 

A~ = O,Of~'(x k) (4.10) 

satisfies the conditions (4.6) and (4.7) for every smooth choice of the 
functions {s~(xk) I 1 -< a -< N}. 

Proof Theorem 3.1 and the Frobenius theorem show that a horizontal 
ideal ~[A~]  is completely integrable if and only if (4.6) and (4.7) hold. It 
is then a simple computation to see that the A's given by (4.9) satisfy the 
conditions (4.6) and (4.7), and hence ~(K1) is not vacuous. �9 

Remark. For D = 2, the conditions of this theorem are replaced by 

B ijk = B j i k  "= B j k i  
(4.11) 

Theorem 4.2. For each ~[A~] in @(K1), the space KI is foliated by 
manifolds of dimension n that are transverse to the fibers of K~ and ~[A~j] 
vanishes when restricted to any leaf of this foliation. If  { V~ ] 1 -< i ~< n} is the 
canonical basis for ~*[A~.], then the leaves of the foliation are given in 
implicit form by 

g~(xJ, qt~,y~)=kx, 1<-2<-ml (4.12) 

where the functions {gx[ 1-<X-- < mi} constitute a complete, independent 
system of primitive integrals of the linear system of partial differential 
equations 

V~(g) = 0, l<--i<--n (4.13) 
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Proof If ~[Ai~] ~ �9 then ~[Ai~] is a closed differential ideal that 
is generated by m~ independent 1-forms {C a, HT}. Since dim(K0 = n + ml, 
the Frobenius theorem implies that K~ is foliated by n-dimensional mani- 
folds such that ~[A~] vanishes when restricted to any leaf of this foliation. 
By definition, * ~ ~g [Ao] is the module of Cauchy characteristics of g[A~j] 
that has the canonical basis { V~ [ -< i-< n}. Accordingly, any solution of the 
system of n simultaneous linear partial differential equations (4.13) will be 
constant on any leaf of the foliation generated by ~[Ai~]. The previous 
discussion has shown that [V~, V~] =0 as a consequence of the Cartan 
theorem and the obvious fact that the canonical basis { V~} for ~*[A~] is 
in Jacobi normal form. The fundamental existence theorem for such systems 
(Edelen, 1985) asserts the existence of m l = d i m ( K l ) - n  functionally 
independent primitive integrals {g~ c A~ [ 1 -< E -< ml}. Thus, any leaf of 
the foliation generated by ~[A~] will satisfy (4.12) for some choice of the 
constants {k~ll-<E-<ml}. It then follows that each leaf of the foliation 
generated by ~[A~] is transverse to the fibers of K~ because V~ J dx j = 6~ 
and hence Vn] Vn-lJ "" "J Vii / z= l .  �9 

Remark. The normalization conditions (2.3) serve to select a basis for 
Yg*[A~] that is in Jacobi normal form. Viewed in this light, the normalization 
conditions (2.3) are a convenience rather than a restriction, since I could 
have equally well used any other basis 

Ui=NJiVj, l<-i<-n, det(NJ/) ~ 0 (4.14) 

I note in passing that such an alternative basis {U~} is involutive because 
{V~} is involutive, and that any system {g~ll-<E-<m~} of independent 
primitive integrals of V~(g)= 0 is also a system of independent primitive 
integrals of U~(g)= 0. Accordingly, a system of independent primitive 
integrals of V~(g) = 0 is naturally associated with the module ~*[A~] rather 
than with a particular basis for that module that is used to calculate a system 
of independent primitive integrals. 

Remark. Results identical to Theorem 4.2 hold for any finite value of D. 

Theorem 4.3. Let Po: {x~, z 2} be any point in K1, ff([Ai~j] E ~)(KI), and 
{ V~[1 _i_< n} be the canonical basis for N*[A~]. The leaf of the foliation 
generated by ~[A~.] that passes through Po is the orbit of Po under the 
n-parameter Abelian Lie group germ AG~ of point transformations that is 
generated by the Abelian Lie algebra { V~ll-< i-< n}. The group manifold 
~ ,  of AG,  is linearly homeomorphic to a copy of M, with local coordinates 
{u'[1 -< i-< n}, a parametric representation of the leaf ~(Po) of the foliation 
that passes through P0 is given by 

xi=Xio"~U i, z A = z A ( p o ,  U i) (4.15) 
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where the Z 's  are obtained by sequential integration of the orbital equations 
of {V~ll---i-<n} starting from the point P0, and (4.15) defines a map ~ :  
~3n  ~ K~ such that 

�9 *Yg[ATj] = 0 (4.16) 

~ * d x  i = du i, ~ * d z  A = ~ * (  V~ J dz A) du ~ (4.17) 

Proof Since { V~} is the canonical basis for Yg*[ATj] and Yg*[A~] is the 
�9 . l -  module of  Cauchy characteristics of ggLA~:], the vector fields { Vii} are tangent 

to the leaves of the foliation generated by Yg[Ai~]. Now, the leaves of this 
foliation are n-dimensional and ~*[ATj] is an n-dimensional, Abelian Lie 
algebra. Hence, exponentiation of this Abelian Lie algebra gives us the 
germs of the n-parameter Abelian Lie group AGn of point transformations 
that act on K~. The group A G ,  is a group of automorphisms of any leaf 
of the foliation generated by Yg[A~], and a simple dimensional argument 
shows that the action of  A G ,  on any leaf of the foliation is simply transitive. 
Thus, if Po is any point in K1, the leaf of the foliation that contains Po is 
the orbit of Po under the action of AGn. Noting that [ V~, Vj] = 0, the flows 
(1-parameter subgroups) of {V~} commute and hence we can compute the 
orbit of Po under the action of  A G ,  by sequential integration of the orbital 
equations starting from Po (see the Appendix). In particular, we have 

d X  ~ 
(4.18) - X (u: = O)  = X o  

Integrating the system (4.18) gives X! i = Xo-4- u ,  which shows that the group 
manifold 54~n of AGn is linearly homeomorphic  to M,.  If  we denote the 
solutions of the remaining orbital equations of {V~} by {ZA(po;  U J)}, then 
X i =Xio-[-U i, z A = z A ( p o ;  U j) give the A G ,  orbit of P0 in parametric form. 
This establishes (4.15). The range of the map �9 that is defined by (4.15) is 
contained in a leaf of  the foliation that is generated by Yg[A~]. Thus, since 
Yg[A~] vanishes when restricted to any leaf of this foliation, we have 
established that xlt*Yg[ATj] = 0. �9 

Remark. A trivial rewriting of the relations x ~ =X~o+U ~ gives u *= 
x ~ -x~ .  The latter relation can be viewed as a mapping from M, to the 
group manifold of the Abelian Lie group A G , .  It is then a simple matter 
to recast the results obtained above in terms of a pure gauge theory with 
gauge group A G , .  The conditions that select the class ~(K1) can then be 
translated into statements about the vanishing of  the gauge curvature and 
torsion. 

Theorem 4.4. If Y([A~] ~ ~)(K1), then the map �9 that is defined in 
Theorem 4.3 is a solution map of the contact ideal; 

~*  ~1 = 0 (4.19) 
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Thus, each leaf of the foliation generated by Y([A~] is the graph of a 
solution map of the contact ideal, and K~ is foliated by the graphs of these 
solution maps. 

Proof It was shown in Theorem 4.3 that the map �9 satisfies ~*2([A~]  = 
0. Thus, since Y([A~] is generated by {C 4, H~}, we have ~ * C  ~=  0. Since 
~1 is generated by { C ~, dC"}  and ~ *  commutes with exterior differentiation, 
it follows that ~ *  cG = 0. �9 

Remark. Identical results can be shown to hold for any finite value of 
D by exactly the same reasoning. 

Remark. The result q~*Y([A~] = 0 actually carries a significant amount 
of additional information. Since { V~} is a canonical basis for * Y( [Aij], we 
will necessarily have ~ * x  i=  x~+ u i. If  �9 assigns the q's by the relations 
T * q ~ =  ~0~(u;), then qt*C~ = q~*H7 = 0  gives 

q~*y~ - 0t)~ ~*A~ - 0204 
Ou i , Ou i Ou j 

and hence the A's provide second derivative information for graphs of 
solving maps on K1. A similar argument shows that the B's provide third 
derivative information for graphs of solving maps on K2. A specification 
of  the A's by 

ot o~ k A~j =f,~(x , qt3, y~) 

as will always be the case in what follows, will thus pull back to ~/~, to give 

02r  4 

Thus, since [ V~, V~] = 0, the integrability conditions for these equations are 

= �9 a) , ,  ~ *  v~(ajk) = ~*  Vj(A,k) 

Satisfaction of  these integrability conditions is guaranteed by the require- 
ment Yg[A~] c ~(K~) in view of Theorem 4.1. 

5. A BASIC E X I S T E N C E  T H E O R E M  FOR S Y S T E M S  OF P D E  

Any Yg[A~] in �9 has been shown to lead to a foliation of  Ks by 
graphs of solution maps of the contact ideal cG. The ideal qg~ is also a 
subideal of  the fundamental ideal 5~ = I { C  '~, dC '~, Ba, dBa}, where the B's 
are the n-forms given by (1.3) that characterize the system of PDE under 
study. These facts prompt the following question: is there a leaf of  the 
foliation generated by Yg[ATj] that contains the graph of a solution map of 
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the fundamental ideal? Any leaf of  the foliation generated by ~[A~]  has 
an associated map ~:  M ~  -> K1 such that 

~'~ * ( ~ 1 : 0  (5.1) 

and 

x!~*dxi=xt2'*(Vj ] dxi)  d u J = d u  i, ~'* dza=xr~*(Vi ] dza)  du ' (5.2) 

where the u's are local canonical coordinates on the group space M~j, of 
the Abelian group A G , .  Thus, in order for �9 to be a solution map of  the 
fundamental ideal, we only have to check whether ~*Ba = 0, since ~ *  and 
exterior differentiation commute. 

Theorem 5.1. If ~ [A~]  c ~(K1),  if �9 is the map associated with a leaf 
of  the foliation that is generated by Yf[A~], and if { V~ 11 -< i -  n} is the 
canonical basis for * Y( [Aq], then 

�9 *B~ = ~*(Fa)  d u l ^  dugA �9 �9 �9 A du" (5.3) 

where the F 's  are elements of  A~ that are given by 

Fa = ha - V~(W'~), 1 - a - r (5.4) 

Proof. If  12cAn(K1), use of (5.2) gives 

xlr*f~=~*(V, J V,_I] " " ]  VI] f ~ ) d u I A d u 2 A . . . A d u  " (5.5) 

An elementary calculation based on Ba = hap, - dW~a A/z~ and 

V~ = O, + y'~O~ + A~O~ 

shows that 

V,J V,_x] " ' ' ]  Vii  B a = F a  (5.6) 

from which the result follows. �9 

Theorem 5.2. Let Y([A~] c O(K~) and let ~[A~]  be the point set in Ka 
that is defined by 

~T[A~] = { P c  Ka I F~ = 0, 1 -< a -< r} (5.7) 

If  �9 is the map associated with a leaf of  the foliation generated by ~[Ai~] 
and the graph of xp intersects ff[A~] in a point set that is pulled back to 
an open subset ~ of M~, by ~I'*, then the restriction of the domain of 
to ~ defines a solution map of  the fundamental ideal. 

Proof  Theorem 5.1 shows that ~*B~ = 0 only when ~*F~ = 0. Noting 
that the F ' s  are 0-forms on Kx, ~*F~ =0  can be satisfied only on those 
regions ~ of  K~ where the graph of  �9 intersects the point set ~[A~].  Let 
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@ = ~ * ~ ;  then ~ can be the domain of a solution map only if ~ is an 
open subset of  M~q,. I f  ~ denotes the map that results from ",It by restriction 
of  the domain of �9 to @, then ~ * B ~  = 0 and the result is established. �9 

Remark.  Similar results can be obtained for any finite value of D. Since 
the form of  B~ = h d x -  d W ~  ^ txm is universal over D, there will be no 
change in the definitions or properties of  the Fa's from one value of D to 
the next. 

The point set ~ [A~]  is the set of  simultaneous zeros of  the r functions 
F~ = ha - Vj(W~), and hence it depends on the choice of  {ATj} because { V/} 
depend on the choice of  {Aij}. This explains the notation 3*[AJ .  This 
notation is used in order to emphasize the fact that we have to test every 
possible choice of  {Ai].} for which Yg[ATj] is contained in S)(Ka) in order 
to use Theorem 5.2 to obtain all solution maps of the fundamental  ideal 
that are accessible by this method. 

In the simplest cases, ff[A~].] will be a submanifold of  K1 of 
codimension r. It is well known, however, that the sets of  simultaneous 
zeros of  r smooth functions on a manifold KI of  dimension n + m~ can 
have a very complicated structure. The conditions of  Theorem 5.2 further 
compound the problem by requiring us to determine intersections of ~-[Ai'}] 
with the leaves of  the foliation generated by N[ATj], and then to test whether 
any such intersection pulls back to sr to give an open set. It is thus 
abundantly clear that these tests can fail and we would be unable to establish 
the existence of a solution map of the fundamental  ideal. Further, if the 
tests associated with Theorem 5.2 are positive, it could happen that only 
one leaf of  the foliation generated by N[Ai~] will intersect ~[Ai~] in a point 
set that is the image of  an open set N in s4~, under the leaf map ~ .  This 
is also not unexpected, because systems of relatively simple partial differen- 
tial equations are known to have solution sets that do not foliate the 
corresponding contact manifold. The reader will perceive that Theorem 5.2 
provides for all of  the various pathologies that can arise. An obvious question 
presents itself at this point. Can we find restrictions on the choices of  {A~} 
for which these intersection problems become simpler? In particular, can 
we find whole leaves of  the resulting foliation of K] that are graphs of 
solution maps,  and when is every leaf of  the foliation the graph of a solution 
map?  Some answers to these questions are presented in the next section. 
Before proceeding to these matters, we note certain strengthenings of  the 
results given by Theorem 5.2. 

Theorem 5.3. Let ,tz be a solution map of the fundamental  ideal 5~ that 
is obtained from Theorem 5.2 with ~[A~' ) ]c �9  and let 5~ admit an 
isogroup ISO of symmetry transformations (Edelen, 1980, 1985); then 
ISO o �9 is a group of solution maps of the fundamental  ideal. 
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Proof  By definition, ISO is the group of point transformations of K1 
that is obtained by exponentiation of the Lie algebra of isovectors of the 
fundamental ideal 5 ~. Thus, since qt is a solution map of 5 ~, ISO o ~ is a 
Lie group of solution maps of 5 r because 

( I S 0 o ~ ) ' 5  ~ = ~ * o  I S 0 ' 5  ~ = ~ ' 3  ~=0 �9 

I have explicitly restricted consideration to completely integrable 
horizontal ideals. It might therefore appear that this restriction could elimi- 
nate some or all solutions of  the fundamental ideal (i.e., some of the solutions 
of the given system of PDE could be missed). That this is not the case is 
shown by the following result. 

Theorem 5.4. Any smooth ( C )  solution map of the fundamental ideal 
can be realized as an open, n-dimensional subset of a leaf of  the foliation 
generated by a completely integrable horizontal ideal. 

Proof  Let do:J, cE"- ->K1 be a smooth (C 2) solution map of the 
fundamental ideal. Since O*tz ~ O, dO has a local presentation 

~ ~ 1 6 2  (5.8)  d O l x ' = u  ~, q'~ = r Yi - Ou i 

Let 

0 2 r  ~) 
A o -  oxZ Ox ] (5.9) 

Then ~[Ai~] c �9 as is easily checked. An integration of the orbital 
equations of the canonical basis {V~]l-<i <- n} for ~*[A~-] gives the leaf 
maps 

= x 0 + u ,  qo +yioU +r i) 
(5.10) 

o6 ~ (xo ~ + u ~) 
y '{ = Y i~o -F O u i 

where the u's are coordinates on a neighborhood J, of R" that contains the 
origin. It is then easily seen that the solution map with local presentation 
(5.8) coincides with the leaf map given by (5.10) with all integration 
constants set equal to zero. �9 

Remark.  Theorem 5.4 shows that Theorem 5.2, with Y~[Ai~] ranging 
over all of  S~(K1), is exhaustive. Thus, if the conditions of Theorem 5.2 are 
not met for any ~[A~]  ~ S~(K1), we may conclude that the given system of 
PDE does not have (smooth) solutions. I note in passing that a result similar 
to Theorem 5.4 does not seem to have been established in the context of 
the Cartan-Kiihler theory. 
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6. R E D U C T I O N  BY I S O V E C T O R S  OF THE  B A L A N C E  I D E A L  

Many of the questions associated with the determination of the structure 
of ~[Ai~] can be answered by studying yet another ideal of A(K1). 

Definition 6.1. The balance ideal associated with the n-forms 
{Bal 1 -< a -< r} over K1 is given by 

@,[A~] = I { C " ,  H T ,  Ba} (6.1) 
o t  and hence ~1[Au] admits YC[Au] as a subideal. 

Remark.  For D = 2, the balance ideal is given by 

~2[B~k] = I{  C ~, C•, H ~ ,  Ba} (6.2) 

Theorem 6.1. If  Yg[Ai'}]~g)(K~), then the balance ideal ~I[A~] is a 
closed differential ideal of A(Ka) and 

Ba ~ F,d,t mod ~[A~]  (6.3) 

so that Fdz is the vertical part of Ba. 

Proof  If  YC[A~] c O(K0 ,  then Y([A~] is a closed differential ideal. 
Thus, in view of (6.1), it is sufficient to check that dBa ~ ~I[A~] for each 
value of the index a. Noting that (3.1) implies dBa = dha A tx and each ha 
is a 0-form, use of (3.16) gives 

dBa = (Ot3ha) C t3 ^ tx + (O~ h~)H~ ^ Ix =- 0 mod YC[A~] 

Use of (3.16) to expand the indicated exterior derivatives in (1.3) thus yields 

B,  = hdz - Irk(W~) dx k A IXj mod ~[A~]  

The result then follows from the definitions of the F 's  given by (5.4), on 
noting that dx k ^ IX; = 6~ IX. [] 

It is not hard to prove that gC*[A~] is not a module of Cauchy 
characteristics of the balance ideal Y31[A~], so I will not labor the reader 
with the details. The important question is whether the canonical basis 
vectors for YC*[A~] are isovectors of the balance ideal. The following result 
is the.refore useful. 

L e m m a  6.1. If  ~[A~j] ~ �9 and { V~ 1 1 -< i -< n} is the canonical basis 
for YC*[A~], then 

5E~,B~ = V~(Fo)Ix mod 2g[a~] (6.4) 

Proof  The canonical basis for Y(*[A~] has the form 

V~ = O~ + y?O~ + a~o~ 

and hence 

5Ev, Ix = O, 5~v, ixj = 0 (6.5) 
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Thus, Lie differentiation of (1.3) gives 

~v,  Ba = V~( ha)lx - d ( V~( W~) ) ^ p.j (6.6) 

When (3.16) is used to evaluate the indicated exterior derivatives in (6.6) 
and note is taken that d x  k ^ ~{s = ~k/,s (6.6) is seen to be equivalent to 

~v,  Ba =-- (V~(h~) - Vi( V~( W~) ) ) Iz mod ~[A,~] (6.7) 

Since Vj and V~ commute by Theorem 4.1, I can interchange their order of 
application in (6.7) to obtain 

~v~B~ =- (V~(ha) - V~( Vj( W~)))lz mod ~[A,3] (6.8) 

The result then follows from the definition of F,  given by (5.4). �9 

Theorem 6.2. If W[A~]6~(KI )  and {V/[1- i -<n} is the canonical 
basis for * W [Aij], then each vector of this canonical basis is an isovector 
of the balance ideal ~I[A~j] if and only if 

Vi(F,) = Lb,Fb, 1 <-- i <-- n, 1 <-- a <-- R (6.9) 

are satisfied for some choice of the nr 2 elements {Lb~} of A~ 

Proof. Since ~l[Ai~ = I { C  ~, H T ,  Ba} and ~g*[A~] is a module of 
isovectors of the subideal ~[A~],  by Theorem 3.3, it suffices to show that 

~v~Ba =- 0 mod ~l[Ai~] 
When the evaluations (6.4) are used, the conditions 

V~(F~)tz =- Lb~Bb mod W[A~] (6.10) 

are obtained. Now, the left-hand sides of (6.10) belong to the vertical ideal 
~" and Theorem 6.1 shows that FatZ is the vertical part of Bo. Accordingly, 
(6.10) can be satisfied if and only if (6.9) is satisfied. �9 

Remark. An  elementary calculation shows that every vector field in 
the module ~*[A~] is an isovector of the balance ideal when the conditions 
of Theorem 6.2 are met. Similar results hold for any finite value of D. 

Noting that [ V~, Vj] = 0, satisfaction of (6.9) implies that the L's satisfy 
c b c c b c the consistency conditions V~(L,j) + L~jLbi = Vj(L~i) + La~Lbr Accordingly, 

the vector fields 

" b t9 
E = V~+La~Fbo~ a 

on K~ x R r satisfy the commutation relations 
A A 

[E, vA=0 
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and hence the quasilinear system (6.9) can be solved in implicit form by con- 
verting (6.9) to an equivalent linear system on K1 • W. Conversely, if the 
L's are chosen so that they satisfy the consistency conditions given above, 
then F 's  can always be found, for a given canonical system { V/] 1 -< i_< n} 
that will satisfy (6.9). Many balance n-forms can thus be constructed for 
which the method will work for any given assignment of a canonical basis. 
Theorem 6.2 can thus be applied to establish existence of solving maps for 
many systems of PDE (see Theorem 6.3). 

It is essential to realize that the system (6.9) is a system of conditions 
on the choice of the functions {Ai~}. This observation follows from using 
(5.4) and (2.5) to write out (6.9) and the elements of the canonical basis in 
their fully expanded forms 

V~(h~ Vj(Wi~)) b -- = Lai{h b + Vy( W J)} 
(6.11) 

a a j 
V~ = a i+y i  0~ q'-AijO,~ 

and to note that {ha, W~} are given elements of A~ that specify the 
system of PDE under study. 

Theorem 6.3. Let Y([A~] be an element of g)(K1) such that the A's 
satisfy the conditions (6.11), let {V~I1 <-i_< n} be the canonical basis for 
Yg*[A~], and let S~(Po) be the leaf of the foliation of K1 that contains the 
point Po. If  P0 is in ~[Au] ,  then ~(P0) is contained in ~[Au].  If  �9 is the 
map from J ~ n  to K1 that is constructed by sequential integration of 
the orbital equations of { V~} starting from Po, then �9 is a map from ~cgn 
to 5C(Po) that is a solution map of the fundamental ideal. 

Proof. Since Po belongs to ~-[A~] by hypothesis, it follows that 

Fa[Po=O , l<--a<-r (6.12) 

Sequential integration of the orbital equations of { V~} starting with the point 
Po (see the Appendix) gives a map ~ from ~/~, into Ka such that the image 
of the origin in sr is the point Po and the range of �9 is the leaf of the 
foliation that contains Po- Accordingly, (6.12) gives the evaluations 

�9 *(Fole0) = (W*F,)I,,:o = 0 (6.13) 

Noting that all V~ restricted to the range of �9 are tangent to the range of 
q~ (i.e., {V~} are tangent to the leaves of the foliation), satisfaction of the 
conditions (6.11) implies that ~*F~ satisfy 

d ('tIr* F'~) = (rIr* L b~)( ~ *  Fb ) (6.14) 
du ~ 
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where {ui[ 1 -  < i < - n} are local canonical coordinates on the group space 
~r Sequential integration of the system (6.14) on M~J, subject to the 
initial data (6.13) gives 

�9 *Fa = 0, 1 -< a <- r (6.15) 

Thus, �9 is a solution map of the fundamental ideal by Theorem 5.2. [] 

Remark. Similar results for any finite value of D can be obtained in 
exactly the same manner. 

An examination of the conditions (6.11) shows that there are basically 
three ways in which they can be satisfied. 

Definition 6.1. The subset ~s (Ka)  of ~(K1) that obtains for those 
choices of {Ai~} for which 

F~=ha-Vj(W~}=O, l<-a<-r (6.16) 

is termed special. Any ~ [ A j  ~ E ~ s ( g l )  and the associated ~*[A~j]~ will also 
be termed special. 

Remark. If the W's all vanish, then ~s (Kl )  is empty because the 
resulting equations ha = 0 cannot be satisfied throughout K~ except in those 
cases where the given system of PDE is satisfied identically. I assume that 
such uninteresting systems of PDE have been excluded from the start. 

Definition 6.2. The subset ~)r(K~) of ~(K~) - ~ s ( K 1 )  that obtains from 
the choices of {Ai~} for which 

V~(F~t= V~(h~- Vj(W~))=O, l <-a<-r (6.17) 

is termed restricted. Any ~[Ai~] ~ ~r(K1) and the associated ~*[A~]  will 
also be termed restricted. 

Definition 6.3. The subset �9 of ~(K1)-~Ps(K1)-~(K~)  that 
obtains from the choices of {A~} for which 

V~(F~) = Lb yb (6.18) 

for some not identically zero choice of the functions {L~} will be termed 
general. Any ~[A~]  c ~g(K~) and the associated ~*[A~]  will also be termed 
general. 

Theorem 6.4. If ~ ( K 1 )  is not vacuous and ~[Ai~] belongs to ~ ( K I ) ,  
then every leaf of the foliation generated by ~[A~]  is the graph of a solution 
map of the fundamental ideal; that is, KI is foliated by solutions of the 
system of PDE. The conditions that the A's must satisfy in these circum- 
stances are 

A;' V~(A;') Vj(A ~ ) (6 19) Ai~= ~, k = ~k �9 

V~(W~,) = ha (6.20) 
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with at least one of the W's not constant on K1 and 

a j 
Vi = Oi + Yi O~ + AijO~ 

Proof  The definition of  ~ ( K 1 )  shows that the F 's  vanish throughout 
K~ for any ~[A~j]~�9 Hence, every point in K1 is a point Po for 
which Theorem 6.3 is applicable. This shows that every leaf of the foliation 
of Ka generated by Yg[A~] is the graph of a solution map of the fundamental 
ideal. The conditions (6.19) and (6.20) that the A's must satisfy in order 
that ~[AT~] ~ ~ ( K 1 )  follow directly from previous results. It is then obvious 
from (6.20) that at least one of the W's must be nonconstant, m 

Remark.  For D = 2, the conditions (6.19) are replaced by 

B~k = Bj,k = Bjki, V,.(Bjkm) = Vj(B~k~) (6.21) 

with 

a a j ~ a  _qjk 
Vi = Oi + Yi O~ -f- yijO~ + ~ijkU,~ 

Theorem 6.5. If s is not vacuous and Yg[Ai~-] belongs to g)r(K1), 
then the F 's  are constant in value on any leaf of the foliation of K1 generated 
by Yg[A~]. Thus, any leaf of this foliation on which all of  the F 's  vanish 
is the graph of  a solution map of  the fundamental ideal. The conditions 
that the A's must satisfy in these circumstances are 

ai~ = A~, V~(A~k) = vj(ai~k) (6.22) 

V~(ha - Vj(W~)) = 0 (6.23) 

with the values of the W's unrestricted and 

c~ j 
V~ = Oi + yg O~ + AijO~ 

Proof  By definition, Y([A~] belongs to g~(Ka) if and only if the A's 
are such that V~(F~) = 0, 1 -< a _< r, 1 -< i -< n. Thus, each of the F 's  is a solution 
of the system of simultaneous linear partial differential equations { V~(g) = 
0[ 1 -< i < n}. The known properties of solutions of such systems show that 
we must have 

Fa = f~ (g~) (6.24) 

where {gz[1---Y-< m~} is a system of independent primitive integrals of  the 
system V~(g)= O. We have shown previously, however, that the leaves of 
the foliation generated by ~[AT:] are given in implicit form by the system 
of relations 

g~ = ks, 1 -< ~ -< ml (6.25) 
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This shows that the F 's  are constant in value on the leaves of the foliation 
generated by ~[A~].  Theorem 6.3 then shows that any leaf of the foliation 
on which the F's  vanish is the graph of a solution map of the fundamental 
ideal. In fact, these solution leaves are given in implicit form by the relations 

fa(k~) = 0 (6.26) 

and (6.25). The conditions (6.22), (6.23) that the A's must satisfy in order 
that ~[A/~] belong to ~r(K1) follow directly from previously established 
results. �9 

Remark. The Cartan-Khhler  theorem for systems of first-order PDE 
is based on the fundamental ideal I { C  ~, dC ~, ha, dha}. This is equivalent 
to the closed differential ideal I { C  ~, dC ~, hdz} in our formulation; that is, 
we have Wia = 0. Further, any vector field U that is a Cartan annihilator 
of the fundamental ideal I { C  ~, dC ~, ha, dha} must be an annihilator of the 
contact ideal and satisfy U J dha = U(h~) = 0. Since { V~ I 1 -< i -< n} has been 
shown to be a basis for a module of Cartan annihilators of the contact 
ideal, we must accordingly have V~( ha) = O, 1 <- i <- n, 1 <- a <- r in order for 
{ V~ [ 1 -< i-< n} to be a basis for the module of Cartan annihilators of the 
fundamental ideal. The Cartan-K~ihler theorem on K1 thus correspond with 
those problems for which Yg[Ai~] belongs to ~ ( K ~ ) .  

Theorem 6.6. If  ~g(K1) is not vacuous and ~[Ai~] belongs to ,{:)g(K1) , 
then the F 's  are constant in value only on those leaves of the foliation 

a , O~ a generated by ~g[Aij] that intersect 5*[A~j]. Thus, any leaf of the foliation 
that intersects ~:[A~] is the graph of a solution map of the fundamental 
ideal. The conditions that the A's must satisfy under these circumstances are 

~ ot A,~ = Aj~, V/(Ajk) = Vj(A~"k) (6.27) 

V~( h~ - Vj( W~ ) ) = L b~,( hb - Vj( W~b ) ) (6.28) 

for some {Lbi} not all zero, and 

V / =  '~ a j  O~ + y~ Oa + AijO,~ 

Proof By definition, Yg[A~] will belong to ~ , (K a )  if and only if 

E(Fo) = t a , F  b (6.29) 

for some not identically zero choice of {Lb~}. Thus, the F 's  can be constant 
in value on a leaf ~ of  the foliation generated by ~[A~]  only when all of  
the F 's  vanish at some point on ~,  in which case the F 's  vanish on the 
whole leaf. This shows that any ~ that intersects ~[A~]  is contained in 
~[A~],  and hence ~ is the graph of a solution map of  the fundamental 
ideal by Theorem 6.3. The conditions that the A's must satisfy in order for 
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~ [ A ~ ]  to belong to  ~ g ( K 1 )  follow directly from previously established 
results. �9 

Remark .  For D = 2 ,  the conditions that replace (6.27) are given 
by (6.21) 

7. E X A M P L E S  W I T H  N = 1 A N D  n = 2  

The computat ions quickly get out of  hand, so I will restrict the dis- 
cussion to cases for which N = 1 and n = 2. Since there is only one q, I will 
drop the Greek indices and use a system of local coordinates {x, t, q, Yx, Yt} 
on K~ and {x, t, q, Yx, Y,, Yxx, Yx,, Y,} on /(2, where I have used Yx~ = Y~x in 
the latter. In the interests of  simplicity, I will consider problems that have 
only a single balance form, since N = 1; that is, the examples will not deal 
with overdetermined systems. Such systems can be handled in the present 
context (i.e., the necessary integrability conditions o n  K 1 are contained in 
the requirements A'~=Aj~i, V/(Aj~)= Vj(Ai~)) , but the calculations can 
become sufficiently involved as to hide the intrinsic simplicity of  the 
methods. The reader can check that the results for overdetermined systems 
agree with those obtained by the Cartan method. 

For a first-order contact manifold Ka with n = 2, N = 1, a canonical 
basis is of  the form 

Vx : Ox + YxOq + AO x + BO' 
(7.1) 

Vt = Ot +YtOq + BO x + CO' 

with 0 x =  O/Oyx, O' =O/Oyt. The symmetry conditions (4.6) of  Theorem 4.1 
are satisfied by (7.1), while the conditions (4.7) become 

Vt(A) = Vx(B), V,(B) = V~(C) (7.2) 

I will concentrate on special and general structures, since restricted struc- 
tures are similar to those treated by the Cartan-K~ihler theorem. 

The [LGordon  equation in characteristic coordinates x = X + c T ,  
t = X -  c T  is given by OxOt4)= f~(~b). This is encoded o n  K 1 by the 2-form 

B1 = [~( q)ix - dyx ^ Ixt (7.3) 

because IX = dx ^ dt, IX~ = dt, Ix, = - d x .  This is the same as (1.3) with 

hi = l](q) ,  W]' =0 ,  W'~ =y~ (7.4) 

and hence (5.4) gives 

F~ = f~(q) - Vt(yx) = f~(q) - B (7.5) 

I can therefore obtain N[A, B, C]  c O~(K1) by the choice 

B=n(q) (7.6) 
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If we set O ( q ) =  df~(q)/dq, a direct computation shows that (7.2) then 
reduce to 

oA ~- OA OA + C OA (-I 
Ot Y'-~q + f/0--~ ~yt =y~ (7.7) 

oC OC+ A oC+ o oC 
~x + Y~-~-q ~Yx ~Yt = y '  (7.8) 

For general f~(q), a solution of this pair of  partial differential equations is 
given by 

A = f~(q) Y~, C = ~ (q )  Y_z (7.9) 
Yt Y~ 

Since { V~, V,} are then regular except on the submanifold S of  KI given 
by yx = 0, y, = 0, Theorem 6.4 shows that every leaf of the foliation of 
(K~ - S) that is generated by ~[A,  B, C] is the graph of  a solution map of 
the O-Gordon equation for any smooth f~(q). For the Poincar6 form 
f~(q) = me kq, (7.7) and (7.8) are also satisfied by 

A = __k = k (y,)2 + g(t) (7.10) 2 (Yx)2+f(x)'  C 

where {f, g} are any smooth functions of their indicated arguments. In this 
case, we have a 2-fold infinity of foliations of K1 such that each leaf of  
each foliation is the graph of a solution map of the fundamental ideal. 

An interesting problem is obtained from the balance form specification 

W x =Yxf(Yx/Yt), W t =Ytg(Yx/Y,), h = 0  (7.11) 

because of  the homogeneity in the arguments {y~, Yt}. An elementary calcula- 
tion shows that 

Vx = Ox + YxOq -t-ya+lox + y,y~Ot, (7.12) 

11, = O, + ytOq + yty~O ~ + y2y~-lo' (7.13) 

form a canonical basis for any choice of  the parameter a, and they are such 
that [Vx, 1I,]=0. Hence, (5.4) and (7.11) give 

F = y~,-~[y2f(yx/y,) +y2g(yx/y,)] (7.14) 

and an elementary sequence of  computations yields 

Vx(F)=y~( l+a)F ,  V t ( F ) = y , y ~ - l ( l + a ) F  (7.15) 
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The horizontal ideal ;~[ya+l, y,y~,  y~y~,-1] thus belongs to ~g(K1) for every 
choice of { a , f ( y x / y t ) ,  g(Yx/Yt )} .  Theorem 6.6 shows that the quasilinear, 
second-order PDE with balance 2-form 

B1 = d ( y x f ( y x / y t )  ) ^ I,~x + d ( y , g ( y x /  yt) ) ^ tz, (7.16) 

has a solution that passes through any point P of K1 for which 

Fp = (y2 f ( y x / y , )  + y 2 g ( y x / Y t ) ) p  = 0 (7.17) 

and that these solutions can be obtained by sequential integration of the 
orbital equations for { V~, Vt} from the point P. If  the functions {f, g} stand 
in the relation y ~ f ( y x / y t ) + y 2 g ( y x / y , ) =  O, then every leaf of the foliation 
is the graph of a solution map for every value of the parameter a. 

A canonical system of vector fields on/s  has the generic form 

Vx = Ox + yxOq -}- yxxO" + yxtO t + AO '= + BO x` + CO tt (7.18) 

Vt  -~- Ot + ytOq +Yxt Ox + YttO' + BO xx + COXt + DO" (7.19) 

These forms incorporate the symmetry relations 1 ~ 1 Bijk = Bj~k = Bjki and y~j = yj~. 
The remaining relations in (4.11) for ~[A,  B, C, D] ~ ~(K2) translate into 

vt(a)  = Vx(B) ,  Vt (B)  = Vx (C)  (7.20) 

V~(C) = Vx(D)  (7.21) 

Let HOM(k) denote the collection of all functions of {Yx~, yx,, y , }  that 
are homogeneous of degree k. Consider those second-order PDE for which 

B1 = h(yxx, Yxt, Yt,)l.~ (7.22) 

with h c HOM(k).  The relations (5.4) thus give 

F~ = h(yx~, yxt, Ytt) (7.23) 

and Y([A, B, C, D] ~ g)g(K2) if and only if (7.20), (7.21) hold, and 

V,:(h) = Lxh, Vt(h)  = L,h (7.24) 

for some not identically zero choice of {L~, L,}. If  I set 

A = ayxx, B = aye,, C = ay,,, da = O, a ~ 0 (7.25) 

then (7.20) are satisfied, while (7.21) is satisfied by any function 
D(yxx ,  yxt, y , ) c  HOM(1). An elementary calculation shows that the first 
of (7.24) is satisfied with 

Lx = ak  ~ 0 (7.26) 

while the second of (7.24) is satisfied provided L, c HOM(0) and 

Lth - a(yxtO~Xh + ytto~th ) 
D - atth (7.27) 
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This evaluation of D shows that D is well defined at all points of K2-S ,  
where S is the submanifold of K2 where O"h --0, and that D ~ HOM(1) on 
K2-S .  I have therefore satisfied all of the conditions for ~[A,  B, C, D] to 
belong to gbg (K2). The analog of Theorem 6.6 thus shows that the intersection 
of any leaf of the foliation generated by N[A, B, C, D] with K 2 - S  that 
contains a point Po: {Xo, to, qo, Yxo, Y~o, Y~xo, Y,o} such that 

h(y=o,  Y~,0, Y,o) = 0 (7.28) 

is the graph of a solution map of the fundamental ideal. Thus, for example, 
we have established the existence of solutions to the Monge-Ampere 
equation that is characterized by 

h =Yx~Y,-(Y~t)  2 (7.29) 

Third-order PDE that are linear in third derivatives can also be analyzed 
in the K2 setting. For example, the Korteweg-de Vries equation ~bt + ~b~b~ + 
~b~x~ = 0 is encoded on / (2  by 

B~ = (Yt + qy~)lz + dy~  ^ Iz~ (7.30) 

Thus, hi = Yt + qY~, W~ = -yx~, Wtl = 0, and (5.4) gives 

Fl = y~ + qy~ + A (7.31) 

Theorem 6.3 can then be applied provided elements {A, B, C, D, L~, L~} of 
A~ can be found such that (7.20), (7.21) are satisfied and 

V~(F~) = LxF1, Vt(F1) = L,F~ (7.32) 

Of course, the KdV equation can also be analyzed in K 3 with h I = 

Y, + qyx +Y . . . .  W]' = W'I = 0. Since the W's all vanish in this description, 
success can only be achieved for leaves of foliations that are generated by 
horizontal ideals that belong t o  ~ ( K 3 )  o r  ~ g ( K 3 ) .  

8. PRIMITIVE INTEGRALS AND CONSTRAINTS 

If ~[Aij]  belongs to g)(K1), then K1 is foliated by n-dimensional leaves 
that are given by 

g~(xi, q ~ , y ~ ) = k ~ ,  l<-E<-rn~ (8.1) 

where {gxl 1-< Y.-< ml} is a complete system of independent first integrals 
of the system of linear PDE V~(g) = 0, 1 -< i -< n. Accordingly, any leaf map, 

�9 : J , c ~ " - ~ K ~ l x i = u i ,  q~=~Ir~(u~) ,yT=O'tr~/ou ~ (8.2) 

obtained by sequential integration of the orbital equations of { V~}, is such 
that ~* annihilates the horizontal ideal ~[A~].  In fact, (8.1) and (8.2) are 
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the manifold-intersection and parametric specifications of  the leaves of  the 
foliation, respectively. We therefore have 

�9 *gx(x i, q=, y~) = ks,  1 <- ~. <- ml (8.3) 

for an appropriate choice of  the constants {kzll  _< X-< m~}. Further, since 
ot c~ ~ ce ot �9 * annihilates ~ [Aq] ,  we have 0 = ~ *  Hi  = ~  (dy~ - A q ) ,  and hence 

Ou' Ou j - ~*A~(xk '  qt3, y~) (8.4) 

which are completely integrable because [ V~, Vj] = 0 and Ai~ = Aj~.. 
The partial differential equations under study are specified by the 

balance n-forms 

with 

Ba = halz - dW~a ̂  Izi =- Fdz mod Y([A,~] (8.5) 

Fa = ha - V~(W~) (8.6) 

Accordingly, a leaf map xI t is a solving map for the given system of  PDE if 

�9 *F~ = ~*(h~ - i v~(wo))=o (8.7) 

Noting that ~*gx (x  i, q", y~) = kx, it follows that 

�9 *g~(xi, q~ ,y~)=k~ ,  l<-~<<-ml (8.8) 

may be viewed as a complete system of  first integrals of the given system of 
PDE for an appropriate choice of the integration constants {kx}; simply 
note that the independence of the collection {gx} and the implicit function 
theorem show that the system (8.8) can be solved for {q~, YT} in terms of  
the x's and that the y's will be the derivatives of  the q's with respect to the 
x's because the resulting map annihilates the horizontal ideal. Thus, solving 
a given system of  PDE on K1 is equivalent to the problem of  constructing a 
complete system of  first integrals (8.8). Partial differential equations and 
ordinary differential equations are thus seen to be similar, since they may 
both be viewed as being solved by the construction of  a complete system 
of  first integrals. 

It was shown in Section 6 that there are three classes of  problems in 
which complete systems of first integrals can be constructed. For the first 
class, ~ [A~]  c ~ , (K1) ,  namely special systems, F~ = 0, 1 - a -< r, on K1. For 
this class, every leaf of  the foliation is the graph of  a solution map, and 
hence the system of first integrals 

~*gx(  xi, q~, YT) = ks, 1 -< Y -< ml (8.9) 
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is obtained for every choice of the integration constants {ks}. For the 
second class, og~[Ai~]E~r(K1) , namely restricted systems, V/(Fa)=0, 
1 -< i-< n. Accordingly, there exist functions K, (g~)  such that 

Fa = Ka(gx)  (8.10) 

Under these circumstances, the system of first integrals 

�9 *gz(x', q~, yT) = k~ (8.11) 

is obtained for those values of the integration constants {ks} that satisfy 

Ka(k~)  = O, 1 <- a <- r (8.12) 

This is tantamount to the statement that the solutions satisfy the differential 
constraints 

xIr*Fa=xl2"*(ha- Vi(Wia))=O, l<-a<-r (8.13) 

If  the W's all vanish, then (8.13) simply says that any solution satisfies the 
original system of PDE ha = 0. On the other hand, for nonvanishing W's, 
the system (8.13) is a system of first-order constraints that the solution of 
the original system of second-order PDE will necessarily satisfy. For the 

L~iFb, and hence third class, Yg[A0] ~ g),(K~), V~(Fa) = b 

F~ = Mbo(X j, g~)gb(gx) ,  1 <-- a <-- r (8.14) 

where 

Mb(O,  g~) = 6b LaiMb,  (8.15) 

Under these circumstances, the system of first integrals 

�9 *g~(x ~, q~, y~)  = k~ (8.16) 

is obtained for those values of the integration constants {ks} such that 

Ra(k~)=O,  l < - a < - r  (8.17) 

9. ISOVECTORS OF THE HORIZONTAL IDEAL 

A better understanding of the properties of first integrals can be 
obtained by studying the system of isovectors of the closed ideal ~[Ai~] c 
S)(K1). This is because Theorem 3.3 shows that ~*[A~] is a module of 
isovectors of Y([Ai~], the canonical system 

ct c~ j V~=O~+y~O~+AqO~, l<- i<-n  (9.1) 

is a basis for ~*[A~], and {g~l 1 -< Y,- ml} is a complete system of indepen- 
dent first integrals of the system { V~(g) = 011 ~< i -< n}. 



Ideals of Nonlinear Field Equations 717 

Theorem 9.1. A vector field U ~ T ( K O  is an isovector of the horizontal 
ideal ~[Ai~] e g)(K~) if and only if it is of the form 

C~ ot  i U=nW~+~?  G+V~(~ )0~ (9.2) 

for any choice of the n functions {n i ~ A~ and for any choice of the 
N functions {r/~ c A~ that satisfy 

V~ V2( n ~) = ( ~?t3 Ot~ + Vk( nt3)ak~)( a~j) (9.3) 

Proof. An arbitrary element U o f  T ( K I )  has the form 
a i U = ni8~ + n~O,~ + n~ O~ 

with coefficients {n ~,n ~ , n ~ [ l < - i < - n , l < - a < - N }  that are 
A~ Since Yg[A~] = I { C  ~, HT[ 1 <- a <- N, 1 <- i <- n} with 

C ~ = dq ~ - y ~  dx k, H 7  = dy7 -A ,& dx  k (9.5) 

then U is an isovector of Yg[A~] if and only if 

5s '~ =- O, 5s =-- 0 mod Ys (9.6) 

With ~ [ A ~ ]  e ~ ( K O ,  an elementary calculation shows that 

d C  '~ = - H ~  ^ dx k (9.7) 

and 

dH'[ = - ( a ~ A ~ ) C  t3 ^ dx k -(a~a~/k)H~ ^ dx  k (9.8) 

Now, ~ u C  ~ = U ] d C  ~ +,d( U j C~),  and hence use of (9.7) gives 

~ u C  ~ = - ( U J  n ~ )  dxk + n k n ~  + d(  U J C ~) (9.9) 

Let 

so that 

~ = U  J C " = n ~ - y T n J  

(9.4) 

elements of 

(9.10) 

Vk('r/~') = U ] H ~  (9.13) 

It thus follows that 

n '~ = ~?~ +y~.n j (9.11) 

Then use of (3.16) to expand the indicated exterior derivative in (9.9) yields 

~ u c "  = { vk(n ~  u J H';} dx ~ + (o~n ~) C ~ 

+{,r +a~,7"}H~ 
--= { Vk(r/~) - U J H~} dx k mod Y{[A~] (9.12) 
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in order for U to be an isovector of Yg[Ai]]. However, (9.2) and (9.5) show 
that U J H~ = n ~ - A ~ m n  m, and hence (9.13) gives 

vr ~ oz m nk = Vk(rl )+Akron (9.14) 

When (9.11) and,(9.14) are substituted back into (9.4) and (9.1) and A~ = Aid- 
are used, the relations (9.2) are obtained for all choices of the functions 
{n i, ~ 1 1  -< i<_ n, 1 - a -< N}. A calculation identical to that given above 
shows that 

~ v H ' {  = { Vk( U ] HT) - (Ot3ATk)@ ~ -- (oJ~aTk) U ] H f }  dx k 

+ {O~( U ] H'~) + nkOl3ATk} C ~ q- {OJ~( U ] HT) + nkoJ~ATk}H t] (9.15) 

Accordingly, U is an isovector of YC[A~] only when 

Vk( U J HT) = (Ot3A'~k)~? t3 + (oJ~ATk) U J H~ (9.16) 

Thus, when (9.13) is used to eliminate U J HT, I obtain (9.3) and the result 
is established. �9 

The system (9.3) is an overdetermined system that will entail integrabil- 
ity conditions. It is not difficult to show that all of the integrability conditions 
are identically satisfied as a consequence of ATj = Aj] and [ V, Vj] = 0. I 
will not go into this here, since a much simpler method will be presented 
in Section 14, where a complete parametrization of the collection of all 
solutions will be obtained. 

Corollary 9.1. If U is an isovector of Y([A~] ~ ~(K1) that is generated 
by {n ~, ~7~[1 -< i<-- n, 1 - a -< N}, in accordance with the requirements of 
Theorem 9.1, then 

.~u C'~ = Ot3( @')C p + {O~('q ~) + n~6~} H~ (9.17) 

~ u H 7  = {Or3 V~('q '*) + n kOt3ATk} C 13 

+ {oJ~ V~(rl'~) + n ko~A~k}H~ (9.18) 

Proof. These results follow directly from (9.12), (9.13), and (9.15) upon 
noting that all terms multiplying dx k in the evaluations of ~ u C "  and S~t,H7 
vanish for the required evaluations of n ~ and nT. �9 

10. VECTOR SPACE PROPERTIES 

Let ISO[Ai~] denote the collection of all isovectors of the horizontal 
ideal ~ [ A ~ ]  ~ ~ (K1) ;  that is, 

ISO[A~] = { U ~ T(K1) I~u~f[A~]  ~ ~[A~]} (10.1) 

Theorem 9.1 shows that any U e ISO[A~] is of the form 

U = n'V,- + ~1~0, + V~(a?~)O~ (10.2) 
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for any {hil l  --< i -< n} and any {rl ~ I1 -< a -< N} that satisfy 

(0~A,j)n +(O~Av)Vk(n ) (10.3) 
The question thus naturally arises as to the vector space properties of 
ISO[A,~)]. 

Clearly, rl ~ = 0 satisfies (10.3), in which case we see that U = n~V~ is 
in ISO[Ai~] for all {n i} e A~ However, the collection of all such vector 
fields is the module ~g*[A~] of T(K1) over A~ that is generated by the 
canonical basis { V~ [ 1 -< i -- n}. The collection of vector fields 

or cr ~ i ~V[Aij]={W,=~7 0,+V~(~7 )0~V'0 ~ satisfying (10.3)} (10.4) 

must therefore be examined. This means that we need to study the collection 
of all solutions of the system (10.3). Complete integrability of the system 
(10.3) and a parametrization of its solution space will be established in 
Section 14. For our present purposes, what is required is information 
concerning how various solutions of (10.3) combine. It is clear from inspec- 
tion that (10.3) is a linear system of second-order PDE for the determination 
of the functions {~7~}. Accordingly, the collection of all {~7 ~} satisfying 
(10.3) forms a linear space. Hence, 74/'[A~] is a vector subspace of T(KI). 

Let ~[Ai~] denote the collection of all simultaneous integrals of the 
system V.(g) = 0, where { V~ [ 1 -< i -< n} is the canonical basis for ~*[Aq],  

~[A~] = { f c  A~ [ V~(f) = 0, 1 -< i < n} (10.5) 

Thus, any f c  ~[Ai~] is of the form 

f =f(gx) (10.6) 

where {gz(x ~, q~, y~)[1 --1~_ ml} is a complete system of independent first 
integrals of the system V~(g) = 0. Further, it is clear from the definition of 
~[A~] that fi~[A~] is an associative algebra under the algebraic operations 
inherited from A~ 

If f e  fi~[A~] and {~/~[1--< a -  N} is any solution of (10.3), then 
{fit ~[1 -< a -< N} is also a solution because V~(f) = 0 and hence f will factor 
to the left in every term in (10.3). This shows that ~V[AT;] is a module over 
the associative algebra fi~[A~]. Now, (10.2) shows that ISO[A~] is a direct 
sum of the modules Yg*[A~] and ~ and hence we have the following 
result. 

Theorem 10.1. The collection ISO[A,~] of all isovectors of Yg[A~] 
~(K~) is a subspace of T(K1) that admits the direct sum decomposition 

ISO[A~] = ~*[A~] (~ ~ (10.7) 

where ~*[A~] is the submodule of T(K1) Over A~ that is generated 
by the canonical basis {V~[ 1 - < i -  < n} and 7K[A~] is the linear subspace of 
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T(KO defined by (10.4) that is also a module over the associative algebra 
~[A~] of functions that are annihilated by the action of all element 
of ~*[AT/]. 

11. LIE ALGEBRA PROPERTIES OF ISOVECTORS 
AND THEIR S U B M O D U L E S  

For clarity of notation, I will use [ , ~ from now on to denote the 
standard Lie product (commutator) of elements of T(KO. It is well known 
that T(K~) forms a Lie algebra with product [[ , ]]. Since ISO[A~.] c T(K~), 
the Lie product is well defined on pairs of elements of ISO[A~]. 

Lemma 11.1. The subspace ISO[A~.] of T(K1) forms a Lie algebra 
with product ~ , 1, and ISO[A~] is a Lie subalgebra of T(KO. 

Proof. By definition, ISO[A~] is the collection of all elements U of 
T(KO such that ~ u ~ [ A ~ ]  c ~[Ai~]. The known property (Edelen, 1985) 

~ u, v~ = ~ u ~ v  - ~ v ~ u  (11.1) 

or Lie derivatives shows that 

OL C o~ [[ISO[Au] , ISO[A,j]~ ISO[Aul (11.2) 

which establishes the result. �9 

Theorem 10.1 has shown that ISO[A~] -- ~*[A~]0) ~ [A~] ,  and hence 
the question naturally arises as to how the Lie algebra of ISO[A~] partitions 
with respect to this direct sum decomposition of modules. 

Lemma 11.2. For any ~ [ A ~ ] 6 ~ ( K 1 ) ,  the module ~*[A~] forms a 
Lie subalgebra of ISO[A~], 

* ~ Yg*[A~] (11.3) lift( [ aij],  Yg*[A~]]] c 

If  U1 nilV~ and U2 i are = = n2V~ any two elements of * [Au] , then 

~ U 1 ,  U2]] = U3  -~-/ ' l~V/ (11.4) 

with 

' Ux(n~)- U2(n~) (11.5) /'13 ~ 

Proof. Recalling that { Vii 11 -< i -< n} is the canonical basis for ~*[Aij], 
Theorem 4.1 shows that for any Yg[A~]e@(KI) we have ~V~, Vj~ =0. An 
elementary calculation then yields 

with {n~} given by (11.5). �9 
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Remark. Expanding the indicated derivations in (11.5) leads naturally 
to the definition of a product {. ]. } on n-tuples of elements of A~ 

{n,  In2} i = n~ Vj(n~) - n�89 ~(n ' l )  (11.6) 

We can then write (11.5) in the equivalent form 

n~ = {n, In2} i (11.7) 

It is then an easy matter to see that the collection of all n-tuples of elements 
of A ~ equipped with the product {. [. } becomes a Poisson algebra because 
we obviously have 

{n~ [n~} = -{n2ln~} (11.8) 

while 

follows from 

{nl [{1/2[ n3}}+ {t/21{n~l nl}} + {113 I{nll nz}} = o (11.9) 

and the Jacobi identity. 

Lemma 11.3. If  

U = ngV;+ "0'%3,~ + Vk(rl'~)O~ (11.10) 

if {~/~ [ 1 -< a --- N }  is any solution of (10.3), and if ~ [ A ~ ]  e g ) ( K 0 ,  so that 
U is an element of ISO[Ai~] in general position, then 

[[~, U~ = V~(nJ)Vj e ~*[A~] (11.11) 

Proof A direct computation based on (11.10) shows that 

~E, U~ = E(nJ)Vj +{ EVi(n~) - ~ o ~ A ~  

a k fl j - Vk(rl )a,~Aij}a~ 

However, the quantities inside the braces all vanish as a consequence of 
the fact that {~1~} satisfies (10.3), and hence we obtain (11.11). �9 

It is of interest to note in passing that this calculation shows that (11.11 ) 
will hold for any U of the form given by (11.10) only when { ~ }  satisfies 
the system (10.3). 

Remark. An immediate consequence of this result is that ~w~ V~, Vj~ = 0 
for any W c  ~ and hence exp(s~w)~V/, Vii = 0 for any W e  ~ 
It thus follows that the commutation relations ~ V~, Vj~ = 0 are stable under 
transport along all orbits of ISO[A~]. 
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Theorem I1.1. If Yg[A~] e g)(K~), then Yg*[A~] is an ideal of the Lie 
algebra ISO[A~]; that is, 

[[~*[A~], ~*[a~]]] c ~*[A~]  (11.12) 

[ ~  [ A j ,  ISO[Ao-]]l ~*[A~] (11.13) 

Proof. The inclusion (11.12) follows directly from Lemma 11.2. Lemma 
11.3 shows that 

[[s~V~, U] = s~[[V~, U]]- U( s i )E  = {s'E(nJ) - U(sJ)}vj (11.14) 

for any U e  ISO[A~], from which I obtain the inclusion (11.13). �9 

Theorem 11.2. If Yg[A~] e �9 then the direct sum decomposition 

(11.15) o t  o L  ISO[A,j] = Yg*[A~j] O 7g'[A,j] 

induces the Lie algebra decomposition 

Proof. The 

~Yd*[A~j], Yg*[A~]]] ~ ~*[A~]  

* ~ ~ Y g * [ A ~ ]  

tx o/ [[~/4#[Aij], 74#[Aij]]] = ~ [A , j ]  

inclusions (11.16) and (11.17) follows 

(11.16) 

(11.17) 

(11.18) 

directly from 
Theorem 11.1. Lemma 11.1 
subalgebra of  T(K1), and hence 

~~ ~W[A~]]] c ISO[A,3 ] 

Since any element of ~ is of  the form 

Wv = ~7~0~ + V~(~7~)O~ (11.20) 

for {~7 ~} satisfying (10.3), it is clear that 

~W~l , Wn2 ~ J dx ~ = 0  (11.21) 

Thus, since Vj] dxi = aj and {Vii1 -< i -  n} is a basis f0r Yg*[Aij],~ the direct 
sum decomposition of  ISO[A~] and (11.18) show that 

~~ ~/4/'[A,3] ~ n Yg*[A~j] = Q (11.22) 

This establishes the inclusion (11.17). �9 

Remark. An explicit computation of the commutator of  two elements 
a a i ot c~ i Wn, = "O 10,~ + V~('q, )0,~, W,2 = ~720~ + V~(~72)02 

of 74f[Ai'~] gives 

~ [ W , l  , W , 2 ] =  WT/3 ( 1 1 . 2 3 )  

has established that ISO[A~j] forms a Lie 

(11.19) 
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with 

r/3 n,(r/2)- W,7:('q, ) (11.24) 

This can be used to define a product on the collection of all solutions of 
(10.3) which converts this collection into a Poisson algebra. 

12. T R A N S P O R T  PROPERTIES 

If  U is any element of ISO[Ai~], the transport operator associated with 
U is denoted by 

flt~(s) = exp(sU) (12.1) 

Lemma 12.1. If  ~ is a solution map of the horizontal ideal ~[A~]  
~(K1) and U c ISO[A~], then f lu (S)~  is a solution map of the horizontal 
ideal ~[A~]  for all s in a sufficiently small neighborhood of s = 0. 

Proof. By definition, �9 is a solution map of ~[A~]  if and only if 
~ * / x # 0  and q~*Y([A~]=0 (see Section 1). Now, (flu(S)q~)*/x= 
~*f l* (s ) / z  # 0  for s in a sufficiently small neighborhood of s=O by 
continuity of f l(s)  at s = 0. Similarly, 

( f l ( s )~ )*~ [A~]  = qr*fl*(s)~[A~j] = ~ * ~ [ A ~ ]  = 0 �9 

Solution maps for systems of PDE are obtained as leaves of the foliation 
generated by an ~[A~j] ~ O(K1), and leaf maps have the implicit pres- 
entation 

g~(x' ,q~,y~)=k~, l<-E<-m~ (12.2) 

where {g~} is a complete independent system of simultaneous first integrals 
of the system V~(g) = 0; that is, {g~} is any system of ml independent elements 
of ~[A~].  The question thus arises as to the effects of the application of 
flu(S) to elements of ~[A~j]. 

Theorem 12.1. If Yg[A~j] ~ O(K1) and i f f  is an element of ~[A~],  then 

f l v ( s ) ( f ) = f  V V ~  Yg*[A~] (12.3) 

and 

f lw(s)( f)= gc ~[Aij ] V W c  ~[Aij ] 

Thus, f lu(S) is a map of ~[A~] into ~~ for all U e  ISO[A~j]. 

(12.4) 

Proof. I f f ~  ~[Ai~], then V~(f)=O, 1 --< i_< n. These facts show that 

f lv( s ) ( f )  = exp( s~v ) ( f )  = f 
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for all V-- n~V~ e ~*[A~]. If  W e  }//'[A~], then (11.11) shows that ~V/, W]] : 
0, and hence ~ Vii, 3-w(S)] = 0. It therefore follows that 

V~(3-w(f)) = ~ V~, 3-w(S)~(f)+3-w(S)(V~(f))=O (12.5) 

Thus, if I define g by g = 5ru(s)(f),  then (12.5) shows that g e ~[A~].  �9 

The use of this theorem is as follows. A leaf of the foliation generated 
by ~[Ai~] can always be specified by equations of the form 

gx( x~, q~, YT) = k~, 1 <-~, <- ml (12.6) 

where {g~} is a system of ml independent elements of N[A~]. Thus, since 
J-u(s) acts on any element of ~[A~] as the identity operator for any 

* a 
Ve ~ [Au] , the relations (12.6) are taken into themselves by the action of 
3-v(S) for any Ve * [ Au]. Thus, transport by any element of ~*[ A~] takes 
any leaf of the foliation generated by ~[A~] into itself. On the other hand, 
for W e  ~ [ A u ] ,  

J-w( s )(g~) = 'g~ = Fw(gr ; s) (12.7) 

because 'gz is an element of ~[A~] for every value of s, and any element 
of ~[A~] can be expressed as a function of the set {g~}. Accordingly, the 
image of the leaf specification (12.6) under the action of ~-w(S) for any 
W e  74/'[A,~] is given by 

~w(s)(gs)  = ' gs = Fw(k~; s) (12.8) 

This shows that the action of any nontrivial element of ~/'[A~] will transport 
a leaf of the foliation generated by W[Ai~] into another leaf of that foliation, 
in general. Further, all x components of any W e ~ff'[A~.] vanish, and hence 
3-w(s) leaves the base manifold M~ invariant. Thus, 3"w(S) is a mapping 
of the fibers of K~ over M, (see Section 1). We can therefore paraphrase 
matters by saying that transport by * [Au] generates leaf automorphisms, 
while transport by ~ generates fiber maps that interchange and repara- 
metrize leaves. 

The balance ideal associated with a system of PDE on K~ was shown 
in Section 6 to be of the form 

with 

o ~  m ot ~, [Au]  - l {C ~, H, , Fd~} (12.9) 

Fa=ha-Vi(Wia), l<-a<-r (12.10) 

Since ISO[A~] o �9 is a solution map of ~[A~],  (12.9) shows that any 
UE ISO[A~] will be an isovector of ~I[A~] if and only if 

~uF~ = U(F,> = LbFb mod ~[A/~], 1 -< a -< r (12.11) 
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However, any U s ISO[A~] is of the form 

O' c~ i U=n'V~+~ 0~+V~(~ )0~ 

and hence (12.11) are seen to be equations for the determination of the 
generating functions {n ~, 7/~} such that {~/~} satisfies (9.3). On the other 
hand, I have shown that any element of ~*[A~]  maps any leaf of the 
foliation generated by )~[A~] into itself, and the graph of  any solution of 
the given system of PDE is a leaf of the foliation generated by some 
admissible choice of {A~)}. I accordingly restrict attention to isovectors of 
the balance ideal that belong to ~ [ A ~ ] .  If W ~ ~ and �9 is a leaf map 
that solves the balance ideal (i.e., �9 is the graph of  a solution of  the given 
system of PDE), then 3-w(S) o �9 is also a leaf map that solves the balance 
ideal for all values of s in a neighborhood of s = 0 when (12.11) hold. These 
results show that the study of isovectors of the horizontal have direct 
relevance in the search for solutions of PDE. 

13. RESOLUTIONS 

Let {g~(x ~, q'~, y~) l l -<E-< ml} be any system of rnt independent ele- 
ments of  ~[A~].  Such a system exists whenever ~g[A~] c ~(K1). It thus 
follows that 

o(g~) 
V~(g~) = O, - -  ~ 0 (13.1) 

O(qC~, y'/) 

because 

V~=O~+y~O= ~ j +A~jO~ (13.2) 

Accordingly, the coordinate transformation 

R ] x"-- x', q'~'= g'~, Y?'= g7 (13.3) 

with 

{g'~,gTll <-a<- N, l <_i<_n}={g~ll <-E <-rnl= N ( l + n ) }  

belongs to Diff(K1). The inverse of this coordinate transformation is easily 
seen to take the form 

R - l l x i =  i, q,~= ,~ ~ -" x , Q~'(x r, gx), '  y, = Y, ( # ,  g~) (13.4) 

The notation 

, _ o / o x  ~', , _ O / O q ~ ' ,  i' O , -  O~ - 0,~ = O /Oy~"  ( 1 3 . 5 )  

will be used for the natural basis for T(K1) relative to the prime coordinate 
system in what follows. 
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Theorem 13.1. If Yf[A~] ~ ~ (K0 ,  then the canonical basis for Yf*[A~] 
is resolved by the coordinate transformation R; that is 

V~ = R ,  Vi = O'i, l <- i <-- n (13.6) 

Proof  The standard definition of R,  gives 

R ,  V, = V,(x~')oj  + ~' ' + ~' ~' V~(q )O~ V~(yj )O~ 

the result then follows on noting that (13.3) imply 

V~(M')=6~, V~(q~') = V~(yy) = 0 �9 

This theorem shows that the coordinate transformation R simultane- 
ously "straightens out" all n elements of the canonical basis { V~ I 1 -< i - n} 
for Yg*[A~]. On the other hand, the horizontal ideal Yg[A~] is closed and 
is generated by the rna 1-forms {C ~, HT}. The Frobenius theorem thus 
shows that Yg[A~] is also generated by rn] exact 1-forms. As it turns out, 
the coordinate transformation R also provides a resolution of Yg[A~] in 
terms of exact generating 1-forms. 

Theorem 13.2. If Yg[A~] ~ ~ ) ( K 1 )  , then 

R * C  '~'= dg ~ = (Ot3g'*)C t3 + (0~g~)H~ (13.7) 

R * H ~ "  dg i = (Ot3g'~)C ~ + j '* t3 = ~ (O~g~)Hi (13.8) 

where 

C a'= dq ~', H• '= dyT" (13.9) 

Proof  Starting with the first of (13.9), the definition of R* gives 
R * C  ~'= dg% Thus, use of (3.16) gives 

R* C '~'= V~(g'*) dx '  + (Ot3gC')C t3 + ('O~g'~)H~ 

However, V~(g ~) = 0 and hence (13.7) is obtained. An exactly similar argu- 
ment starting with the second of (13.9) gives (13.8). �9 

The explicit resolution of the generators of Yg[Ai~] can be obtained by 
noting that the system (13.7), (13.8) can be inverted because R e Diff(K1). 
Direct calculation will thus yield the relations 

C ~ = N ~  dg t3 + ]V~ j dg~,  H'~ = N,% dg ~ + N , ~  dg t] (13.10) 

which are an explicit realization of the results of the Frobenius theorem. 
These results provide a direct and possibly simpler realization of the 

basic existence theorem, Theorem 5.2. I have shown that the balance n-forms 
that characterize the system of PDE in K1 have the presentation 

n,  ---- F,g mod Yf[A~] (13.11) 
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where 

Fa(x  j, qI3, y~) = h~ - V~(W'~) 

Thus, if I define the functions *Fa by 

* F . ( x  ~', q~', YT') = R -] *Ira 

and use (13.3), then 

727 

(13-.12) 

(13.13) 

*Fa (x", k s, kT) = 0, 1 --- a - r (13.14) 

is the restriction of the equation Fa = 0 to the leaf of the foliation given by 

g~(2d, qt3, y~) = k ~, gT(x  ~, q13, y f )  = k7 (13.15) 

Use of  Theorem 5.2 thus yields the following result. 

Theorem 13.3. If X[Ai~] ~ ~(K1) and if ml constants {k s, kT} can be 
found such that the equations 

*Fa(x~ ' , k~ ,kT)=O,  l< -a<-r  (13.16) 

are satisfied on an open set @ c Nit,, then the given system of PDE o n  K 1 

has a solution whose graph is the set of points of K~ in the leaf 

g ' ~ ( # , q ~ , y ~ ) = k  , g i ( x ~ , q ~ , y ~ ) = k i  (13.17) 

over @. 

This theorem reduces the problem of  solving a given system of PDE 
on Kx to the problem of  finding an open set ~ of roots of the system of  r 
equations (13.16) in n variables {x~'}. Accordingly, all of  the integration 
procedures for the problem are contained in the construction of  a system 
of  m I independent integrals {g~, gTI 1 <- a <- N, 1 <- i<- n} of the system 
{Vdg)=O}. When this theorem works, (13.17) show that the solution is 
presented as a system o f  ma independent first integrals over ~. 

14. EXISTENCE AND PARAMETRIZATION OF SOLUTIONS TO 
THE SYSTEM (9.3) 

The results obtained in the last section show that the horizontal ideal 
~g[A~] c ~(K1) is generated by the m~ exact 1-forms {dg '~, dgT}. In order 
to use this fact to establish existence of solutions {,7 "} of the system (9.3), 
I look at the problem of  computing elements of ISO[A~] in the new 
coordinate cover of g I that is generated by the coordinate transformation 
R of the previous section. 
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A vector field on K1 in general position relative to the prime coordinate 
cover has the form 

U,=ni'O,i+n~'O, + ~' i' n~ 05 (14.1) 

Theorem 14.1. A vector field U' is an isovector of the horizontal ideal 
N[A~] e S~(Kx) in the prime coordinate system if and only if 

nV= p~(x j', qtr, y~') (14.2) 

and 

n ~'= S'~(q ~', yf'), n~'= T?(q t3', yf') (14.3) 

for some smooth choice of the functions {U, S ~, TT) of their indicated 
arguments. 

Proof Noting that C a '= dq ~', Hi = dyT', an elementary calculation 
shows that 

5gu, C ~'= dn ~'= Ojn ~' dxJ'+O'~n~'Ct3'+O~n~'Hf' (14.4) 

and hence ~ u , C  ~' will belong to ~[A~]  only if Ojn ~'= O. An exactly similar 
argument based on the relations 

or' ~u,Hi  = dnT' (14.5) 

shows that ~u,HT' will belong to Yg[A~] only if @n~ Since there 
are no constraints imposed on the arguments of n r, I obtain (14.2) 
and (14.3). �9 

Use of  the prime coordinate system has significantly simplified the 
calculation of  elements of ISO[A~]. In particular, there are no conditions 
such as (9.3) that have to be satisfied. Satisfaction of the conditions (9.3) 
in the original system of  coordinates is thus implied by the forms that have 
been obtained for U' in N[A~]. This implies that the conditions (9.3) can 
always be satisfied in the original coordinate system; simply transform U' 
by the action of R .  x in order to obtain an isovector of ~[A~]  in the original 
coordinate system. This isovector in the old coordinates will thus give a set 
of  functions {~7 ~ [ 1 -< ~ -< N} that will satisfy the system (9.3). The specifics 
of  this calculation are as follows. 

Any isovector of N[A~] in the old coordinate system has the form 

u = n'V, + ,?~a~ + v,(n~)o~ 

�9 j o t  c~ j ~ i = n'Og + ( ~  + n yj )0,~ + ( V~(~7 )+ n A}~)O~ (14.6) 

and hence 

U J dq ~ = rl ~ + nly] (14.7) 
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I now set 

U = R ~ ' U '  (14.8) 

to obtain 

rl '~ = ( R . '  U') J dq ~ - nJy~ (14.9) 

An elementary calculation based on (13.4) gives 

k ,o (?  ~ ]3,oQ ~ a O  ~ 
- -  - - + n g '  ( R * l U ' )  l d q ~ = n  Ox k '+n  Oq t3, J Oy~' 

k, OQ ~ ]3, oQ '~ ,oQ ~ 
= n  OXk-----;+n Og - - - T + n ~  Og~ (14.10) 

and 

n ~= n r (14.11) 

Now, (14.2) and (14.3) give the evaluations 

ni'= pi(xJ  ' g]3, g~) 

n '~'= S~ (g  ]3, g~), n'~'= TT(g]3, g~) 
(14.12) 

and hence explicit evaluation of the set {rl"l 1 -< a -< N} can be obtained 
by combining (14.9)-(14.12). The functions {Q~(M, g]3, g~)[ 1 -< a -< N} in 
these evaluations are fixed by the transformation R. On the other hand, the 
functions {pi, S ~, T7 [ 1 <- i <- n, 1 <- a <- N }  are arbitrary functions of  their 
indicated arguments. These functions therefore parametrize the possible 
choices of  the functions {r/u}, and hence they parametrize the solutions 
of (9.3). 

An identical calculation can be used to compute independently the y7 
components of an isovector of  ~g[A~]. Although they are of an equally 
complicated nature as those obtained above for the q" components, they 
turn out to be exactly V~(~7 ~) when the known (Edelen, 1980) transformation 
properties of the y's are used. The results that obtain from the calculation 
given above are thus self-consistent and complete. 

Partial results of this nature could be anticipated from the form of  the 
system (9.3), 

a a k cr ]3 EVj(Tq )=(O]3A~;I'q]3 +(O]3A,j) Vk('q ) 

Simply observe that if O]3A~ all vanish, then any set of  N elements of ~[A~]  
will work; that is, ~7 ~ = N'~(g~) = N'~(g ]3, g~). 
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15. ISOVECTORS OF HORIZONTAL IDEALS FOR 
SECOND-ORDER CONTACT MANIFOLDS 

Previous sections of  this paper have dealt exclusively with first-order 
contact manifolds K 1. Similar results hold for contact manifolds of any 
finite order. An indication of the structure of these results is provided by 
the study of  contact manifolds of second order. I will simply state the 
results, since the proofs follow exactly the same lines as those for corre- 
sponding results on K~. 

Recall that the horizontal ideal o n  K 2 

C ~ = dq ~ - y ~  dx k, C'~ 

H,~. = dy~ - B~k 

is generated by the 1-forms 

= dye' --Y,~k dx  k (15.1) 

dx k (15.2) 

in which case I write ~g[Bi~k] for the horizontal ideal associated with {Bi~jk}. 
Theorem 15.1. Any isovector of ~g[Bi~k] ~ ~)(K2) is of the form 

U = n'V~ + ~7~0~ + V~(~?~)0~ + V~Vj(~? ~)0~ (15.3) 

for any choice of { ~  ~ A~ I 1 -< a -< N} such that 

vkv ,  v j ( ~  ) =  ~ ~ + ~ ~ o~ (c3,~Bijk)'q (a ,sB i j k )Vm("  0 ) 

+ (a~rB,~k) V,.E(. ~) (15.4)  

Theorem 15.2. The collection ISO[Bi~-k] of all isovectors of ~:~[B~jk] 
admits the direct sum decomposition 

ISO[B,~k] = ~*[BT~k]| ~W[BTjk] (15.5) 

where ~t/'[B~k] is the collection of all vectors of the form 

IV. = ~O~ + V~(~'~)O~ + V~Vj(~)O2 (15.6) 

for any {~7~e A~  < a _< N} that satisfies (15.4). 

Theorem 15.3. The collection ISO[B~k] forms a Lie algebra that admits 
the subalgebra ~*[BTjk] as an ideal: 

[[~*[B~k], ~*[B~k]]] c ~*[B~k] (15.7) 

c~ C ~ * [ B ~ k ] ,  ~ [ B u J  ~*[BTj~] (15.8) 
or ce C ot ~~ , ~ ~rEB,jk] (15.9) 

16. EXTENDED CANONICAL TRANSFORMATIONS FOR 
FIRST-ORDER CONTACT MANIFOLDS 

The coordinate transformations considered in Section 13 do not pre- 
serve the structure of the contact 1-forms (i.e., C ~ =  dq ~ - y ~  dx k, while 
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C"'= dq'~'). The analogy with classical contact transformations that obtains 
for n = 1 or N = 1 suggests that an analysis of  transformations that preserves 
the structure of the generating 1- forms  of  a horizontal ideal will prove to 
be useful. 

The contact manifold K1 has a system of local coordinates {x i, q~, y~'} 
and a system of ml 1-forms 

C "~ = dq "~ - y ~  dx k, H' /= dy ' / -Ai~ dx k (16.1) 

with 

Ai% = A~ (16.2) 

These serve to define the horizontal ideal 

Y([A~] = I{C",  HTI1  -< a -< N, 1 -< i --< n} (16.3) 

of  A(K1). Let 'K1 be a replica of  KI with a system of local coordinates 
{'x i, 'q~, 'y~'} and a system of m~ 1-forms 

'C '~ = d('q ~') -'y'~ d('xk), 'H7 = d('yT) - 'Ai~ d('x k) (16.4) 

with 

'A~ = 'A~ (16.5) 

These serve to define the horizontal ideal 

'~ [ 'A~]  = {'C a, 'H~[1 -< a --- N, 1 -< i -  < n} (16.6) 

of  A('K1). 

Definition 16.1. A map S:KI->'KI  that belongs to Diff(Kx, 'K1) is an 
extended canonical transformation if and only if 

S* 'Y(['A~] c Y([A,]] (16.7) 

The collection of all extended canonical transformations is denoted by 

Ect = {S ~ Diff(K1, 'K,)I S* 'Y~['A,~] c ~[a,~]} (16.8) 

Theorem 16.1. Let Yg[A~] be a horizontal ideal of A(KI) and let 
{V~[1-<i-<n} be the canonical basis for Yg*[A~]. A transformation 
S ~ Diff(K1, 'K0 ,  with the presentation 

'xi=s'(xJ,  q~,y~), 'q~=s~(xJ, q~,y~) (16.9) 

o ~  " 'y7 = s~ (x j, q~, y~) (16.10) 

is an extended canonical transformation if and only if 

det(V~(s~)) ~ 0 (16.11) 
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where 

V:(s ~) = ~ Vj(s ~) 

*A~. .  V:(s r~) V/(s k ) = V: V/(s ~ ) - s~ Vj V/(s g ) 

V~, Vj~(s ~) = ~ V,. V:~(s ~) = 0 

(16.12) 

(16.13) 

(16.14) 

*A~ = S* 'A~ ~) (16.15) 

When these conditions are satisfied, we have 

S* ' C  a = (Ot3s ~ - s~Ot3s k ) C  ~ + (O~s ~ -- s ~ O ~ s k ) H f  (16.16) 

S* 'H~=(Ot~sT-*A~kO~s~)Ct~  +(O~s~ - * a ~ j  o ~ t s ~  (16.17) zntikU l3o i ] Jt~t j 

P r o o f  An elementary calculation shows that (16.9) and (16.10) yield 

S* ' C  ~ = ds ~ - s~ ds ~ (16.18) 

when (3.16) is used to evaluate the indicated exterior derivatives, I obtain 

s *  ' C  ~ = ( V~(s ~ ) - s~ Vj(s~))  d #  + (a~s  ~ - s~a~s k) C ~ 

+ (O~s ~ - s~O~sk )H~ (16.19) 

Thus, S can be an extended canonical transformation only when (6.12) 
holds, in which case I obtain (6.16). A similar calculation based on 

S* 'H7  "~ ~ *A~ =--Si -- ~ ik  dsk (16.20) 

shows that 

V~(s 7) = *ATk Vj(s k) (16.21) 

must be satisfied, in which case I obtain (16.17). When (16.12) is used to 
evaluate VjV~(s ~) and (16.21) is used to simplify the results, I obtain (16.13). 
Conversely, it is easily seen that (16.12) and (16.13) imply (16.21). Now, 
(6.12) serves to determine the functions sT, while (6.13) serves to determine 

, ot the functions Ai~ provided (6.11) holds. I will then have the required 
symmetry 'A~ = 'A}~ only if *A~ = * ~ A}i, and (16.13) shows that this will be 
the case only when the functions s ~ and s; satisfy the conditions (16.14). �9 

Satisfaction of the condition (16.11) implies the existence of functions 
S~ such that 

S j V i (  s k) = S k g j (  s i) -~- 6 k ( 1 6 . 2 2 )  

Accordingly, (16.12) gives the explicit evaluations 

s 7 = S'~ V~(s  ~) (16.23) 

while (16.13) and (16.23) yield 
a rn r a k ~ t 

A , j -  S j  S~{V~V~(s ) - S t  Vk(s )VmVr(S )} (16.24) 
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Since S ~ Diff(K1, 'K1), the inverse mapping S -~ exists. I can therefore use 
*A~ = S* 'A~ to obtain the explicit evaluations 

. . . .  14ij - S-I*(S'~S~{V,,,V~(s'~)-S~Vg(s'~)V,,,V~(st)}) (16.25) 

These explicit evaluations show that any extended canonical transformation 
is determined by specification o f  the n + N functions { s ~, s~ [ 1 <- a <- N, 1 <- i <- n} 
o f  {x j, qt3, y~} that satisfy the conditions (16.11), (16.14) and are such that 
S ~ Diff(K1, 'K0.  

Definition 16.2. Any system of functions {s ~, s i} of the arguments 
{x j, q~, y~} that satisfy the conditions (16.11) and (16.14), and are such that 
S ~ Diff(K1, 'K1), will be referred to as generating functions of an extended 
canonical transformation. 

The analysis presented so far has dealt with extended canonical trans- 
formations of a general horizontal ideal of K~. We now specialize to closed 
horizontal ideals. 

Theorem 16.2. If  W[Ai]] is a closed ideal of A(K1) (i.e., Yg[A~]] c 
~(K1)), then any extended canonical transformation is generated by gen- 
erating functions {s ~, s i} such that (16.11) is satisfied, S c Diff(K~, 'K1) , and 
the matrix of coefficient functions that multiply {C t3, H~} in (16.16) and 
(16.17) is a nonsingular matrix. Under these conditions, 

S* 'Yg['A~] = Yg[Ai~] (16.26) 

and 'Yg['A~] is a closed ideal of A( 'K1)  , that is, 'Yg['A~] c ~ ( ' K 1 ) .  

Proof If  ~[A~]-]c,~(K1), then Theorems 2.1 and 3.2 show that 
V~, Vj~ = 0. The conditions (6.14) are therefore satisfied for any choice of 

the generating functions {s ~, si}. Thus, the generating functions only have 
to satisfy (16.11) and be such that S e  Diff(Ka, 'K~). I now use (16.16) and 
(16.17) and Yg[A~] ~ ~(K1) to obtain 

S*d( 'C '*)  = dS* 'C '~ =- 0 mod ~[A~]  (16.27) 

D* d ('H'~) = dS* 'H~ -~ 0 mod giAnt] (16.28) 

By definition, any extended canonical transformation S is such that 
S* 'W['Ai~] c W[A~]. Satisfaction of the additional hypothesis concerning 
the nonsingularity of the matrix of coefficients of the right-hand sides 
of equations (16.16) and (16.17) thus implies S* 'W[ 'A~]=YC[A~] .  The 
inverse transformation S -1 exists because S ~ D i f f ( K I , ' K O ,  and hence 
S-I*Yg[A~] = 'Yg['Ai~] under the given hypotheses. Application of S - l *  to 
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(16.27) and (16.28) serves to establish 

d ( ' C  '~) =- O, d ( ' H T )  =- 0 mod 'Yg['A,~] 

that is, 'Yg['A~] ~ ~('K1). �9 

This theorem shows how to construct many closed horizontal ideals 
of A('K1). Simply take any collection of functions {s ~, s ~} c A~ that 
satisfies the conditions of Theorem 16.2 and any {A~} such that ~[A~]  
~ ( K 0 .  Evaluations of 'A~ such that 'Yg['A~] ~ ~('K1) will then be given 
by (16.25). This construction partially answers the question of how to 
construct closed horizontal ideals that underlies the existence proofs given 
in Sections 5 and 6. Indeed, the subset of ~('K~) that can be generated in 
this manner is extensive, in view of the fact that we know that all assignments 
Ai~ = OiOj~j'~(x k) will generate elements of ~ ( K 0 .  

Let 'Y(*['A~] be the module of Cauchy characteristic vector fields of 
'Yg['A~], and let {'V~[ 1-< i -  < n} be the canonical basis; that is, 

'V~ = '0, + 'y~ '0~ + 'A~ '0~ (16.29) 

On the other hand 

S ,  V~ = V~(s k) 'Ok + V~(s ~) 'Ot~ + V~(st])'0~ (16.30) 

When (16.12) and (16.21) are used, (16.30) can be written in the equivalent 
form 

S,  V~ = V~(sk){'0k + S~ '0~ + *a~j '0~} (16.31) 

for any S ~ Ect. Thus, since 'y~ = s~, det(V~(s~)) ~ 0 for any extended canoni- 
cal transformation, and the right-hand sides of (16.31) have to be composed 
with S -~, we have established the following result. 

Theorem 16.3. If  S is an extended canonical transformation, then the 
canonical bases for Yg*[A~-] and '~*r'A~.] ~ ~ ..,j~ are related by 

S ,  Vi = ( Vi(s k) o S -1 'Vk (16.32) 

and hence 

S,  Yg*[A~] = 'Yt*r'A~.q_v L --,jJ (16.33) 

It is of interest to note in passing that S,  V~ = 'V~ only when V~(s/) = 8~. 
These results give procedures for constructing systems of partial 

differential equations for which large families of solutions can be construc- 
ted. For simplicity, I will take n = 2 and use {'x, 't} as a system of local 
coordinates on the base manifold ' M  2 of 'K1. Let { ' h " ] l - a - <  N} be a 
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system of N elements of A~ In order to make matters specific, I 
consider the balance 2-forms 

' B  ~ = ' h ~ d ( ' x )  ^ d ( ' t )  - d ( ' y T )  ^ d( ' t) ,  1 -< a -< N (16.34) 

that characterize the system of  PDE (coupled wave equations in characteris- 
tic coordinates) 

O('x)O( ' t )  h a 'x, 't, qb t3, O('x)' 0 - ~ /  

Previously established results show that 

' a  ~ =- ' F  ~ d ( ' x )  A d ( ' t )  mod 'YC['Ai~] (16.35) 

with 

' F  = ' h  - V (y, ) -  - (16.36) 

Theorem 6.4 shows that '~ [ 'A~]  c S~s('K1) if the 'A's are generated in the 
manner specified above from some ~[A~]  ~ g)(K1) and 

'h a = 'A~t (16.37) 

In this event, every leaf of the foliation generated by 'YC['Ai~] is the graph 
of  a solution map of the given system of  PDE. Theorems 6.4 and 6.5 can 
also be used to construct more general systems of  PDE for which the 
existence of  solution maps can be established. 

This procedure can be turned around to give an associated inverse 
problem. In order to do this, I make any appropriate choice of the generating 
functions {s ~, s ~} that satisfy the hypotheses of Theorem 16.2, choose any 
YC[A~] c ~ ( K 1 )  , and then use (16.25) to compute the functions 'Ai~j. Suppose 

Ax, - ,qt~, y~, ,y~). The system of PDE that this calculation gives ' ~ - G ~ ( ' x ,  't, , t~ 

(16.35) for which 

p t /3 
'h ~ = G " ( ' x ,  t, 'q~, y x ,  ' y~)  (16.38) 

will then be such that every leaf of the foliation generated by 'YC['A~] will 
be the graph of  a solution map. It is interesting to note that equation (16.37), 
when 'A~, is evaluated in terms of the generating functions {s ~, s ~} by use 
of (16.25), can be viewed as a system of  partial differential equations for 
the determination of the functions {s ~, s ~} for given 'h a ~ A~ If these 
equations have solutions, then the existence of solutions to the given system 
of PDE is assured, and the graphs of the solutions are all leaves of  the 
foliation generated by 'YC['A~].  Concatenations of these ideas with integra- 
tion of the orbital equations associated with the canonical basis {' V~} gives 
a structure that is similar in some respects to classical Hamilton-Jacobi 
theory. 
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Corresponding results for second-order contact manifolds can be 
obtained by use of  the same arguments as those just given for K1. 

APPENDIX.  SEQUENTIAL INTEGRATION OF THE ORBITAL 
E Q U A T I O N S  OF VECTOR FIELDS IN JACOBI N O R M A L  
F O R M  A N D  REPRESENTATIONS OF THE ASSOCIATED 
FOLIATION STRUCTURE 

For the purposes of  this discussion, let K be an M-dimensional  space 
with local coordinates {zAI 1 --< A-< M} and let 

0 l < i < n < M  (A1) v, = V ? ( z  B) ~  A , 

be a system of smooth vector fields on K in Jacobi normal form; that is, 

[ V~, Vj] = 0 (A2) 

I f  Po: {Zo a} is a point in K, then the fundamental  existence and uniqueness 
theorem for systems of autonomous ordinary differential equations shows 
that there exists a neighborhood ~1 of u 1 = 0 in R on which the initial value 
problem 

d Z ?  A ~ A (A3) 
d u l  - V 1 ( Z l  ),  z I A ( O )  = Z o 

is satisfied. Let the solution of  this initial value problem be denoted by 

Z A = ~A(po ; u 1) (A4) 

The functions {~1 A} serve to define a map ~1 : 31 -~ K by 

~Xtl [Z A = ~IA(P0 ; U I) (A5) 

The same existence theorem shows that the initial value problems 

d z A  A B 
du 2 = V2 ( Z : ) ,  z2A(0) = ~A(p0;  U 1) (A6) 

are solvable on an open set ~2 of R 2 that contains the point u l =  u : =  0. Let 
the solutions of  this problem be denoted by 

Z A = ~2a(eo ; u 1, U 2) (A7) 

We then have a map xtr2:J2 ~ K that is defined by 

XI't 2 [Z A =  ~ZA(po ; u 1, 1-/2 ) (m8) 

Since { V~} are in Jacobi normal form, all of  the flows generated by the V's 
commute with each other. Accordingly, the representation (A8) will be the 
same if we were to start with V2 and then use V1. 
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Continuing in this manner, we obtain a map �9 = ~ ,  : 3. c R ~ -> K with 
the representation 

qt I z A= ~A(p0; u 1, u 2 , . . . ,  u") (A9) 

This map is said to be obtained by sequential integration of the orbital 
equations of the system { V~} starting from the point Po. By construction, 
the point Po is in the range of ~ .  In fact, Po is the image of the origin of 
R". Since the vectors {V~} are in Jacobi normal form, the representation 
(A9) is independent of the order in which we select the V's in the sequential 
integration process. 

Since the system { V~} is in Jacobi normal form, the system of simul- 
taneous, first-order PDE 

V~(g) = 0, l<--i<-n (A10) 

will have solutions that can be expressed as functions of M - n independent 
primitive integrals {g~(zA) I1 ~ Y, <--M- n}. The space K is thus foliated by 
manifolds of dimension n that are implicitly defined by 

g ~ ( z a ) = k ~ ,  l < - - ~ , < - - m - n  (Al l )  

The leaf Le(Po) of this foliation that passes through the point Po is given 
by choosing the constants {k~} by 

kz = g~( zo a) (A12) 

The map �9 that is constructed by sequential integration of { Vii} starting 
from Po is then easily seen to be a map from 3, c R n into ~(Po).  In fact, 

gives a local parametric representation of SE(Po). 
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